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Abstract: Different techniques have been developed for capturing and retrieval, action recognition and video based
reconstruction of human motion data in the past years. In this paper, we focus on how these techniques can be
adapted to handle quadruped motion capture data and which new applications may appear. We discuss some
particularities that must be considered during large animal motion capture. For retrieval, we derive suitable
feature sets from quadrupeds motion capture data to perform fast searches for similar motions. Based on the
retrieval techniques, the action recognition can be performed on the input motion capture sequences as well
as on input video streams. We further present a data-driven approach to reconstruct quadruped motions from
video data.

1 Introduction

Motion capturing of human motions has become
a standard technique in data-driven computer anima-
tion. Several systems are nowadays available in all
price categories, starting from consumer electronics
(e.g. Kinect, WiiMote) up to professional optical sys-
tems like Vicon or Giant. All these technologies have
their strengths and weaknesses, an overview is given
in (Moeslund et al., 2006).

This increasing amount of motion capture data al-
lows for new applications not only in computer an-
imation and human computer interaction but also in
sport sciences, medicine and biomechanics. On the
one hand, motion analysis in horses became a power-
ful tool to record movement patterns during gait and
other exercises. 3-D motion capture data of horses are
mainly used in research to broaden knowledge and
understanding of clinical conditions and treatment
(Hobbs et al., 2010). On the other hand, quadruped
data can be interesting for games, if we consider an-
imation of non-humanoid characters (Vögele et al.,
2012).

While motion capturing of animals have already
got increasing attention in clinical environments but
most of the techniques in computer animation are de-
veloped to handle human data. To cover this gap, we
adapt several well known techniques from computer

animation to work with quadrupedal motion capture
data, and report on according series of experiments in
this work.

2 Related Work

We cover the closest related works for various ar-
eas in this section. For further details we refer to the
cited publications and the references within. A good
overview on previous works in computer animation,
dealing with quadruped motions is given in a STARe-
port (Skrba et al., 2008).

Retrieval. The increasing amount of available mo-
tion capture data requires all data-driven methods to
make use of efficient motion retrieval strategies. So
called Match Webs to index motion capture databases
are introduced in (Kovar and Gleicher, 2004). This
method has quadratic complexity in the size of the
motion capture database, since a local distance matrix
has to be computed comparing each pair of frames.
The same complexity holds for the computation of a
neighbor graph structure (Chai and Hodgins, 2005).
Boolean features are introduced (Müller et al., 2005),
to segment human motion capture data. Krüger et
al. present a fast method to search for numerically



similar poses and extends pose matching to motion
matching by employing a so called lazy neighborhood
graph (Krüger et al., 2010).

Action Recognition. In the field of action recogni-
tion, a wide variety of techniques was developed, de-
pending on different available types of input signals.

Using video sequences as input, Bobick et al.
employ temporal templates based on static vector-
images (Bobick et al., 2001). Here, the vector value at
each point is a function of the motion properties at the
corresponding spatial location in an image sequence.
Schuldt et al. use local space-time features in combi-
nation with Support Vector Machine (SVM) classifier
for action recognition (Schuldt et al., 2004). Arikan
et al. use an interactively guided SVM to annotate en-
tire motion capture database in an interactive process.
Their approach works well on a small motion capture
database of American football motions used in their
paper (Arikan et al., 2003).

Motion Reconstruction from Video. A variety of
solutions has been investigated by computer vision
community for 3D motion reconstruction like con-
struction of statistical human pose models — trans-
forming 2D silhouettes and contours into 3D pose
and motion (Elgammal and su Lee, 2004); model-
ing of motion priors — some prior knowledge from
motion captured databases utilized for 3D reconstruc-
tion; and physics based modeling for video based
human motions (Wei and Chai, 2010). In motion
priors modeling, the prior knowledge from mocap
database is sometimes embedded into implementa-
tion of some constraints. Rosenhahn et al. employ
geometric prior information about the movement pat-
tern in markerless pose tracking process (Rosenhahn
et al., 2008). Most of the work regarding reconstruc-
tion from video sequences has been done on human
motion like (Yasin et al., 2013).

Less work has been done in case of reconstruc-
tion of quadruped species motion: Huang et al. syn-
thesize motion sequences, driven by photographs of
horses (Huang et al., 2013). In (Wilhelms and Van
Gelder, 2003), the authors make use of contour de-
tection techniques and fit a 3D model into the ex-
tracted 2D contours. For slow motions and simple
backgrounds, this technique works satisfyingly. Con-
siderable user interaction was needed for sequences
that contain more complex motions. Based on PCA
on binary input images, the authors of (Favreau et al.,
2004) extract parameters to extract 3D motion se-
quences. We are not aware of any data-driven method
in this context, since there is a vital need to record sys-
tematic quadruped motion capture databases as well.
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Figure 1: Marker setup on horse performing different gait
sequences on treadmills. The colored markers show that
markers which are selected to develop feature sets.

3 Quadruped Mocap Data

In this section, we present some details on the
recording environment of our motion capture data. In
this paper, we use three-dimensional kinematic data
captured from five mature horses.

3.1 Marker Setup

For recording, retro flective skin markers are attached
to each horse using adhesive tape. Marker setups can
be varied meeting the measurements for various pur-
poses. In a basic motion capture set-up of horses, gen-
erally seven markers are required to capture the whole
body motion. The first marker is normally placed
on the head, then two on the trunk and the four on
the hooves. However, the number of markers needs
to be increased, when the measurement purpose is
more complex and requires more details. In addition,
marker setups can vary between subjects due to the
size differences. In our case, markers are placed on
the head (left and right crista facialis), on the highest
point of the withers, sacrum and lateral side of each
hoof to identify motion cycles. Since mocap data used
in this work are originally recorded in a clinical setup
where research is focused on the neck movement in
different types of gait, additional markers are attached
along the vertebrae of the horses neck. An overview
on used markers in this work is given in Fig. 1.

3.2 Motion Capture Dataset

Under the recording conditions described above, mo-
tion sequences of five animals are recorded. Each an-
imal performed at least three trials (each 10 s) of the
two motion styles walk and trot.

Thus, we have a database containing 30 motion
trials, that include varying numbers of motion cycles.
The total amount of data sums up to 36,000 frames,
sampled at 120 Hz which corresponds to five minutes
of motion capture data. We denote this full database



as DBquad. For our experiments, we work with vari-
ous downsampled versions of this data set. If this is
the case, the upper index denotes the sampling fre-
quency.

It is important to note that due to the relatively
sparse marker setup, 14 in the discussed setup, com-
pared to 42 in the HDM05 (Müller et al., 2007)
database, it is not possible to fit a suitable skeleton
to the recorded marker data. Thus, we are featuring
the data by their 3D marker positions only.

4 Motion Retrieval

The search for similar motion segments in a pos-
sibly annotated, database is a crucial step in all data-
driven methods. We have decided to adapt the tech-
nique from Krüger et al. (Krüger et al., 2010) due to
the following reasons: The technique can be easily
parameterized with arbitrary feature sets. Compar-
isons of pose based versus motion based similarity
searches are possible with the same framework.

4.1 3D Feature Sets

In (Krüger et al., 2010), the authors conclude that a
feature set called Fe15 is the one of choice, because
of its simple computation, low dimension, while still
meaningful in describing human poses. This feature
set describes the positions of hands, feet and the head
in the body’s root coordinate system. We adapt this
feature set to a feature set F quad

M15 where the positions
of the four feet and the head are used to describe a
pose in a relative coordinate system.

While in skeleton representations of human mo-
tion data, the root node is located between the hips,
other choices are possible for quadruped data. We
consider the marker Withers (No. 9 in our marker set)
to be root marker. This choice is motivated by the ob-
servation, that the root node in human representations
is very close to the whole body’s center of mass. For
quadrupeds, the center of mass is more close to the
forelegs (Nauwelaerts et al., 2009). Thus, we obtain
a more characteristic normalized representation of the
poses.

We perform the pose normalization directly on
marker data: All positions are given relative to the
Withers marker, after rotating all marker positions
around the y axis such that the Sacrum marker (No.
10) is moving in the x-y-plane.

We also consider feature sets including the veloc-
ities and accelerations of the markers. The idea is to
have a similarity search that might be based on inputs
from other sensor types, such as acceleration sensors.

These sensors have been used to reconstruct full body
poses of human motions (Tautges et al., 2011) from a
sparse sensor setup. The feature sets developed on the
basis of three dimensional information are described
in Table 1.

4.2 kNN search

We distinguish between two types of knn search:
First, similar poses have to be found in a motion cap-
ture database. After computing feature sets for all
frames of the motion database, the k nearest neighbors
for a new pose can efficiently be retrieved by search-
ing a kd-tree. Second, we search for the k most simi-
lar motion sequences compared to an example motion
sequence. In this case, a technique called lazy neigh-
borhood graph (LNG) can be applied (Krüger et al.,
2010).

4.3 2D Feature Sets

To reconstruct motion sequences from 2D input either
derived from mocap data or video data, we need to
search the database for similar poses based on 2D fea-
ture sets extracted from input signals. Hence, we in-
troduce 2D feature sets which are derived from mocap
data and from video data as well. If these feature sets
are comparable, we are able to solve the cross-modal
retrieval scenario between 2D input signals and the
motion capture database. In this context, we sample
feature sets from the database at as many as needed
viewing directions to find similar poses without hav-
ing any information about the actual viewing direc-
tion of the camera.

Motion Capture Data. From 3D feature sets F quad
M15 ,

we have extracted 2D feature sets F quad
2D10 by ortho-

graphic projection on 2D plane at different viewing
directions — azimuth angles (0-350) with step size
10 degrees and elevation angles (0-90) with step size
10 degrees. We translate these 2D feature sets so that
they locate their origin at center of mass in order to be
comparable with later described video based 2D fea-
ture sets. On the basis of these 2D feature sets, we
are able to search for pose based nearest neighbors
within a kd-tree. We extract 2D feature sets from in-
put motion at specified azimuth and elevation angles
in a similar fashion as described above. When exper-
iments are performed on the bases of mocap data in-
stead of video data, we call this data as synthetic input
data.

Video Data. In case of video data, 2D feature sets
F quad

vid10 are detected and tracked with the help of MSER



Table 1: Details of different types of feature sets used in this
paper.

Feature sets Type Description of the feature sets

F quad
M15 3D Normalized positions of the hooves markers

and the head markers.

F quad
M15vel 3D Derived velocities of the hooves markers and

the head markers.

F quad
M15acc 3D Derived accelerations of the hooves markers

and the head markers.

F quad
2D10 2D Normalized positions of the hooves and the

head markers in 2D plane extracted from 3D
information of synthetic data.

F quad
vid10 2D Normalized positions of the hooves and the

head markers in 2D image plane extracted from
video data.

and SURF feature detection techniques. We have
used the same feature detection technique as in (Yasin
et al., 2013) and refer to this work for further de-
tails. In this paper, we only deal with intrinsic cam-
era parameters and have discarded the extrinsic cam-
era parameters, i.e. translation and orientation infor-
mation. In order to get intrinsic camera parameters,
scaling factor and focal lengths along x-axis and y-
axis fx and fy respectively in pixel related units have
been extracted from the 2D and 3D information of
a couple of frames where motion capture and video
data are captured synchronously. We use 3D infor-
mation of few frames for camera calibration purpose
only. To be comparable with 2D feature sets F quad

2D10

derived from mocap data, we normalize the video 2D
feature sets F quad

vid10 by translating them to their center of
mass. The two dimensional feature sets extracted ei-
ther from motion capture data or video data have been
represented in Table 1.

5 Action Recognition

Identifying specific actions in an unknown stream
of incoming motion data is still a current strand of
research, even for human motion sequences. Basi-
cally all techniques developed for human data might
be tried on quadruped data, too. Since only a limited
amount of motion capture data is available, that can
be used for training and cross validation steps, many
sophisticated machine learning techniques can not be
applied here.

We propose to use a modified k-nearest neighbor
voting, that considers the temporal evolution of the
regarded motion sequence. Instead of using the near-
est neighbors obtained by a similarity search for vot-
ing directly, we consider poses for voting only, that
are ending poses of a path through a lazy neighbor-
hood graph (LNG) as described in Section 4. This
lazy neighborhood graph can be parameterized with

the width of the preceding window of frames. Thus,
poses are regarded as similar, if the preceding window
of frames is similar to the preceding query frames,
too.

Considering the temporal evolution of a motion
segment, makes the knn voting more robust, due to
the following reasons: First, poses that are numeri-
cally similar, but intersecting the actual sequence of
poses from another direction will be filtered out. Sec-
ond, if a query from a motion class is not reflected by
the database and is given as input, k nearest neighbors
can be returned from all motion classes. In such noisy
neighborhoods it is unlikely that a connected path of
the needed length is found. Thus, no neighbors will
be returned and the risk of wrong classifications de-
creases rapidly.

6 Reconstruction from Video

3D motion reconstruction from monocular video
is an ill-posed problem and for a 3D reconstruction
we obtain the missing information from pre-existing
knowledge available in the mocap database. To this
end, we retrieve nearest neighbors from the database,
as described in the motion retrieval section. In the
spirit of Chai and Hodgins, we perform a data-driven
energy minimization, based on these nearest neigh-
bors (Chai and Hodgins, 2005). We adapt their prob-
lem formulation and modify it according to the situ-
ation when we have neither skeletal data nor joints’
orientation information and only make use of a sin-
gle camera instead of two cameras. As we lack infor-
mation in our mocap database like joints’ orientation
data and skeleton representation, we perform pose re-
construction by employing joints’ positional configu-
ration.

6.1 Online Motion Reconstruction

We consider reconstruction of motion as energy min-
imization problem and to solve this we have utilized
three energy expressions, pose energy, control energy
and smoothness energy,

Erec = argmin(αEp +βEc + γEs) (1)

Where α, β and γ are the associated weights for pose
energy, control energy and smoothness energy respec-
tively and are considered as user defined constants.
Each energy term is normalized by its number of ele-
ments N.

Pose Energy. This term minimizes the 3D posi-
tional configuration of reconstructed pose and 3D



pose derived from the k-nearest neighbors in low di-
mensional PCA space. It eliminates back and for-
ward movements of the performing horse and forces
the reconstructed pose according to the the near-
est neighbors—prior information available in mocap
database. Mathematically,

Ep = ‖
1√
Nt

(Pr
t −Mt)

TC−1(Pr
t −Mt)‖2 (2)

Where Pr
t is the reconstructed pose, Mt is the mean

vector of knn-examples at frame t, The C−1 is the
inverse of the covariance matrix and (Pr

t −Mt)
T is

the transpose of the difference between reconstructed
pose and the mean vector.

Control Energy. It computes deviation between 2D
projection of 3D feature sets of hooves and head of
the reconstructed pose Pr,2D

t and 2D feature sets of the
estimated pose Pe,2D

t obtained from video or synthetic
input example at current frame t,

Ec = [
1√
Nt

(Pr,2D
t −Pe,2D

t )] (3)

In case of video example, we perform first the pro-
cess of normalization so that both sides coordinates
becomes comparable but in case of synthetic exam-
ples we need not to normalize the pose first.

Smoothness Energy. It enforces the smoothness of
the reconstructed pose and eliminates the jerkiness or
jittering effects. For that purpose, we utilize previous
two reconstructed frames information as,

Es = [
1√
Nt

(Pr
t −2Pr

t−1 +Pr
t−2)] (4)

Where Pr
t , Pr

t−1 and Pr
t−2 are the reconstructed poses

at frames t, t−1 and t−2 respectively.

7 Results

7.1 Similarity Searches

We now report on the experiments performed for
logical and numerical similarity searches. In the
small database, k nearest neighbors are retrieved
relatively fast: The construction of the kd-tree on
database DB30Hz

quad is done in less then eight millisec-
onds, searching for 256 similar poses took 0.6 mil-
liseconds in average.
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Figure 2: Precision-recall diagrams comparing feature sets
based on position (F quad

M15 ), velocity (F quad
M15vel) and accelera-

tion (F quad
M15acc) information. We show results for one repre-

sentative query motion cycle of both motion classes walk
and trot.

Numerical. For numerical similarity search, we
have searched for similar motion cycles using the
LNG. To come up with precision-recall diagrams, we
extend the local pose neighborhood until all motion
cycles of the query class are returned as match. We
perform this experiment with all feature sets based on
3D information: F quad

M15 ,F quad
M15vel and F quad

M15acc. Figure 2
shows the according diagrams for a representing walk
and trot motion cycle. For the walking query, we ob-
tain a high precision value (97%) up to a recall from
97%. For all feature sets, the precision drops for the
last few matches only. In contrast for the trot motion
cycle, more mismatches are returned when we use the
position based feature set F quad

M15 . Using derived fea-
ture sets F quad

M15vel and F quad
M15acc, we obtain much better

results. This behavior can be explained by a closer
look on the motion classes: In both classes, walk and
trot, the marker positions are not sufficiently distinct,
while velocities and accelerations are.

Logical. Kovar and Gleicher (Kovar and Gleicher,
2004) have introduced the concept of logical similar-
ity searches. Here, the retrieved matches of a query
motion segment are used as new queries in new it-
eration of the searching process. New segments are
retrieved until no new ones are found. We repeat this
experiment with motion cycles from both classes. To
this end, we restrict the number of nearest neighbors
to 256, to ensure that no false positives are returned
for a query motion cycle. In both cases, walk and trot,
this retrieval scenario finds nearly all motion cycles
without any mismatches. Figure 3 shows the numbers
of new found motion cycles per iteration. The algo-
rithm converges after four iterations in both cases.

7.2 Recognition of Activities

In this section, we focus on the results of our action
recognition approach. We will first compare the sim-
ple knn method versus the proposed LNG based vari-
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Figure 3: Number of found motion segments per iteration
of the logical similarity search. We show results for one
representative query motion cycle of the two motion classes
walk and trot.

ant on motion capture data. Later we show some re-
sults obtained from video data.

Mocap Data. To investigate the difference between
knn voting per frame and the LNG based voting, we
have performed experiments with the same represen-
tative motion cycles as in the previous section. Fig-
ure 4 shows the results for the simple knn voting. The
horizontal axis of this Figure describes a time line
given in frames, while the vertical axis shows all mo-
tion classes represented by our database. We search
for 256 nearest neighbors and counted per frame to
which motion class these neighbors belong. This
number of found nearest neighbors per frame is color-
coded from white (no neighbor in this class) to black
(256 neighbors in this class). Consequently, these
graphs show a per frame confusion of the neighbor-
hoods obtained with the respective method.

For the walking example, most of the neighbors
belong to the walking class. Considering the trot mo-
tion cycle much more confusion between the two mo-
tion classes occurs. Still the majority belongs to the
correct motion class in all frames, but this indicates,
that this method is getting unstable, already in this
simple scenario taking into account only two motion
classes.

In comparison to these investigations, Figure 5
shows the results for the modified version with LNG.
We keep the window length, taken into account for
the graph construction, ten frames for these examples.
Here, results for both example motions show a similar
structure: No mislabeling are found in both cases, in
return the number of retrieved neighbor poses from
the LNG paths are much lower after the first cou-
ple of frames. For the first frame the result is the
same, as for the direct knn voting: The path LNG
has a length of one frame only. With increasing path
lengths the number of neighbors that can be con-
nected with the graph drops down to approximately
50 paths per frame when the full window length is
reached.

Video Data. In this case, we have tracked and ex-
tracted the feature set F quad

vid10for video sequence for
each motion class. We search the 256 nearest neigh-
bors in database DB25Hz

quad and compute the accord-
ing LNG paths. All considered frames are classified
correctly, the results are shown in the supplemental
video.

7.3 Video based Reconstructions

In order to elaborate the performance of proposed re-
construction framework, first we have sampled our
database at different viewing directions for kd-tree
construction as mentioned earlier in section 4. We
have evaluated the effectiveness of the proposed
methodology on variety of input examples like mo-
tion capture based, so called synthetic and video ex-
amples.

Mocap based Examples. We have testified our ap-
proach on walk and trot motions at different viewing
directions for synthetic data. To this end, we have se-
lected the range for viewing directions like azimuth
angles from 0 to 180 degrees with 5 degrees step size
(0-5-180) assuming that the same results would be ex-
ecuted for the second half of the circle. Similarly, for
elevation angles, we start from 0 degree up to 60 de-
gree with step size 10 degree (0-10-60), considering
the fact that near to 90 degree or top view, the body of
the performing horse becomes the hinderance in cap-
turing the full detailed motion of the hooves.

For performance check, we have computed aver-
age reconstruction error between original motion and
the reconstructed motion by calculating the average
Euclidian distance in centimeters between them. We
present this average reconstruction error with a graph
as shown in Figure 6, where along x-axis azimuth an-
gles (0-5-180) and along y-axis elevation angles (0-
10-60) have been plotted, while the reconstruction er-
ror is color-coded from blue (low error) to red (high
error).

For walk motion, it has been noticed that at side
view either it is left side or right side, lowest recon-
struction error is achieved: Here, the hooves of the
horse are best visible. In front view, some lack of
motion information appears which results in higher
reconstruction error. We also observe that when the
viewing direction moves to top view, the reconstruc-
tion error also increases 6(a).

Like for walk, the side view of the horse in trot
motion gives detailed information due to which re-
construction error is reduced as compared to other
views. The nearly same pattern of results like in walk,
appears in case of front view and top view. Some dif-
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Figure 4: Visualization of the number of nearest neighbors per frame for walk and trot motion cycles. This Figure shows the
results for the feature sets based on 3D information.
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Figure 6: Average reconstruction errors for walking and
trotting motions, with different viewing directions — az-
imuth angles (0-5-180) with step size 5 degree and elevation
angles (0-10-60) with step size 10 degree.

ference is due to the reason that in trotting motions
the positions hooves and head are different compared
to walk. As a result, both front view and the top view
execute less reconstruction error as compared to walk-
ing motions, see Figure 6(b).

Video Examples. We have checked our reconstruc-
tion approach on real videos of walk and trot motions.
2D feature sets F quad

vid10 , which have been extracted from
the input video, are given as input to the system. By
performing different experiments, we have found that
reconstruction results depend mainly on how accurate

2D feature sets F quad
vid10 are extracted from video data.

The challenges during feature extraction are: blur-
ring effects, occlusion, illumination factors etc. which
create hinderance in detection, tracking and extraction
of feature sets from video data. Trot motions have
more occlusions and blurring effects as compared to
walk motions. Due to these factors, we can not detect
or track the feature sets correctly for all frames. Thus,
we have annotated key-frames in the video. Some re-
sults can be seen in supplementary video.

8 Conclusion and Future Work

In this work, we have transferred techniques, de-
veloped for human motion data, to motion data from
quadrupeds. For motion retrieval, the basic technique
can be used without modifications, after defining suit-
able feature sets. Considering the results of the action
recognition experiments, we show that extending the
knn search by a temporal component, even a simple
approach can lead to good results. In the area of mo-
tion reconstruction from video data, we have adapted
a technique that is known to work on human motion
sequences. For the motion styles, represented by our
database, we obtain satisfying results in both cases,
synthetic 2D input query motions and real input video
sequences. We are aware that all results have been
achieved on a relatively small database. Nevertheless,



we believe that the results presented here show how
quadruped data can be used in the context of data-
driven animation. Therefore, one of the most impor-
tant steps for further work is the creation of an en-
larged motion capture database, to cover more types
of gait and other typical exercises. With such type
of data at hand, more sophisticated techniques for ac-
tion recognition might be applied and compared in a
reasonable manner. The motion reconstruction sce-
nario might be extended to more complex scenarios,
we have presented here results on a static camera with
an object that is moving on a treadmill only. A re-
construction of motion sequences from a riding the-
ater based on single video is one of our future goals.
In this scenario, the types of motions are less re-
stricted as compared to the current treadmill scenario.
The skeleton representation of quadruped might be
computed and helpful in the process of full body
quadruped motion reconstruction. Another possible
strand of research is the reconstruction of full-body
movements based on accelerometer readings in out-
door scenarios. Another important step is the record-
ing of other species in order to derive more general
models of quadruped motion from such kind of data.
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Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger,
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