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Abstract
This work introduces an efficient method for fully automatic temporal segmentation of human motion sequences
and similar time series. The method relies on a neighborhood graph to partition a given data sequence into distinct
activities and motion primitives according to self-similar structures given in that input sequence. In particular, the
fast detection of repetitions within the discovered activity segments is a crucial problem of any motion processing
pipeline directed at motion analysis and synthesis. The same similarity information in the neighborhood graph
is further exploited to cluster these primitives into larger entities of semantic significance. The elements subject
to this classification are then used as prior for estimating the same target values for entirely unknown streams of
data.
The technique makes no assumptions about the motion sequences at hand and no user interaction is required for
the segmentation or clustering. Tests of our techniques are conducted on the CMU and HDM05 motion capture
databases demonstrating the capability of our system handling motion segmentation, clustering, motion synthesis
and transfer-of-label problems in practice - the latter being an optional step which relies on the preexistence of a
small set of labeled data.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Due to the rapid development of devices which record and
process motion data, techniques for motion recognition,
analysis and synthesis applications have become evermore
important. Fields of application range from research to in-
dustry and further include entertainment, health care and
consumer electronics. This diversity of applications as well
as the sheer amount of recorded data makes it especially im-
portant to boost fully unsupervised motion analysis methods,
while, at the same time, producing high quality results and
becoming even more efficient.
Motion segmentation is one area where both automation and
maximization of quality are of concern. For one thing, the
quantity of captured data does not allow for time-consuming
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manual segmentation. For another thing, any further anal-
ysis of recorded data needs accurately defined data entities
to build meaningful motion models. In particular, creating a
statistical motion model to facilitate motion analysis calls for
a data set consisting of perceptually well-defined ’atomic’
activity segments. Methods which address the segmentation
problem of isolating action primitives from motion data col-
lections have been pursued by a number of previous works
[ZlTH08,ZlTH13,MC12]. While they generally work within
an unsupervised setup, the problem is still far from being
solved. There are two major issues which deserve particular
attention:

(C1) Distinct Activities: Separate subsequences which ei-
ther contain divergent repetitive successions of poses or
no such patterns at all.

(C2) Motion Primitives: Detect the presence as well as the
precise number of action repetitions/motion cycles. Sepa-
rate these motion primitives from each other and from the
rest of the motion.
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The two major challenges outlined above are elaborated in
the following. On the one hand, to the end of motion analy-
sis, the motion entities are clustered in a motion model. One
important condition on a clustering to be conclusive is that
the intra-cluster variance should be low. To this end, the first
step lies in producing perceptually well-defined, commen-
surable activity segments. In particular, repetitions of simi-
lar motion primitives which occur at any point in the motion
sequences should be isolated by the segmentation such that
they can aggregate to uniform structures. The similarity of
the primitives as well as the frequency of their occurrence
is paradigmatic for their segmentation. This is, if there are
three similar instances of a single action, say A, in the data,
the according pose-sequences of each instance of A should
be separated from other poses which are dissimilar to all
poses of the two other instances of the action A.
With the idea of motion synthesis in mind, a motion graph
which allows for synthesis with some given constraints can
be built from the clusters obtained by the outlined analysis
step. The motion transitions which connect the motion prim-
itives have a prominent role in the synthesis graph. They
stand out due to their non-repetitive nature. Frames which
are temporally located between but, as such, are neither sim-
ilar to poses repeated within activities before or afterward,
should be separated from both preceding and succeeding
segments. The poses of a motion transition, for instance, oc-
cur as part of an intermediate section between walking and
running without being similar to poses of either one of both
adjacent actions. In case such transitions would not be iso-
lated from other primitives by the segmentation, this would
unavoidably impose a restriction on the motion graph, since
any synthesized sequence which would otherwise contain
one action, a transition and another action might be forced to
include additional primitives even when this is neither con-
venient nor intrinsically motivated. To this end, we employ
a Lazy Neighborhood Graph as found in [KTWZ10], orig-
inally introduced as a fast substitute for subsequence dy-
namic time warping. In particular, the analysis of the con-
nected components in the neighborhood graph is an opportu-
nity for insights which were not discussed by the authors or
any other works so far. In addition, the use of neighborhood
graphs vastly reduces the complexity of the motion segmen-
tation task. Our main contributions are:

• Both activity separation task and a primitive detection are
stated as well-known graph problems.
• Activity separation which allows to distinguish between

periodic structures and non-periodic transitions.
• Subdivision of activities into self-similar units, i. e. one

step in a walking sequence, while efficiently detecting the
correct number of repetitions of each primitive.
• Keeping up with existing techniques in terms of effi-

ciency.

Our approach concentrates on human motion sequences
which contain repetitive patterns in the sense that similar
poses reoccur in a cyclic sense or other repetitive fashion.

In our systematic examination of all data given in the CMU
and HDM05 data bases we observed that, by taking into ac-
count all poses of sequences of length more than 8 seconds
which reoccur - after some intermission - within a time slot
not wider than 10 seconds, we reach 81.89% of all motion
sequences in these data bases.

The rest of this paper is organized as follows. As a first
step, input sequences are investigated with regard to the de-
tection of distinct activities (C1). The resulting motion seg-
ments are of the type behavior or activity and could be char-
acterized by terms like ‘walk’, ‘dribble a ball’ or ‘wipe the
window’. This is discussed in Section 3.1. Special empha-
sis is on the separation of transition phases from the rest
of behaviors. The second step is detecting motion primi-
tives (C2) within motion segments resulting from the first
segmentation step. This is done exploiting the same self-
similarity information computed beforehand (see Section
3.2). In Section 4, the clustering of thus located motion seg-
ments is discussed, resulting in a set of activity clusters with
motion primitives as representatives. The results of both seg-
mentation and clustering are presented in Section 5. One
important application of our entire approach is the transfer
of given labels from a small set of motion primitives to en-
tirely unknown motion data. We demonstrate the strengths of
our method by solving the transfer of labels problem based
on the meaningful motion primitives accomplished by the
segmentation. The results of this step along with an evalu-
ation is presented in Section 6.1. Examples of synthesis re-
sults - which represent another important area of applica-
tion - along with a detailed overview of our segmentation re-
sults by comparison with other accomplished methods will
be given in Section 6.2 followed by a discussion of limita-
tions (Section 7) and a brief conclusion (Section 8).

2. Related Work

There has been a number of attempts to effectively solve
the non-trivial problem of automatic motion segmentation.
The following strategies are of great significance. A parti-
tion of motion sequences into behavior segments by a PCA-
based method was proposed by [BP∗04]. This segmenta-
tion focuses on detecting behavior segments which is, in
some respect, related to the first step of our approach. The
groundbreaking work of Zhou et al. [ZlTH08, ZlTH13] has
examined a segmentation concept based on (hierarchical)
aligned cluster analysis (H)ACA. This segmentation tech-
nique solves the segmentation task from an angle of tempo-
ral clustering which results in motion primitives which are
assigned to classes of semantic discriminability. The classi-
fication of these small motion segments, in theory, enables
the creation of longer motions as compositions while raising
efficiency standards.

A different strategy is based on a clustering of poses
which comprise the given time series. The works of
[BCvdPP08] and [BWK∗13] are based on this idea. The
former of the two proposes the extraction of motion motifs
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as representatives of motion clusters which are the build-
ing blocks of a graph structure useful for motion compres-
sion and the creation of blend spaces. The latter propose
an exploratory search and analysis system called Motion-
Explorer which also depends on the organization of single
time stamps according to similarity features. Even so, the
exploratory system naturally accommodates segmentations
of its input sequences in the hierarchical cluster graph struc-
ture developed as part of the associated motion processing
pipeline. However, their main focus was on a new visual
representation of motion data rather than analysis tasks as
discussed here.
From a similar angle, [LMGCG12] create temporally mean-
ingful pose clusters which reveals a weakly supervised way
of training annotations for pose clusters to decide in which
cases - and temporally defined by which timestamps - an iso-
lated action has taken place when recording the data.
Needless to say, training a segmentation of unknown data
from example segments or precomputed templates is a more
straightforward approach which works well depending on
the quality of motion templates used as training set, that is,
at any rate also on the quality of preexisting motion clips
from which the class templates may be derived. Müller et
al. [MRC05, MR06, MBS09] have developed a framework
based on geometric features in order to learn templates for
solving - and accelerating solutions to - matching problems
such as annotation and retrieval [MR06, MBS09]. Adaptive
segmentation [MRC05] is one of the fundamental results in-
duced by employing geometric feature vector sequences to
compare motion capture data streams at the segment level
rather than frame level. [LS13] present a very much related
idea in their work on learning intrinsic regularities for seg-
mentation purposes. They demonstrate that motion capture
data can be segmented by using only a limited set of example
motions to segment even different action types than the ones
included in the training data. That is, the authors use Latent
Dirichlet Allocation (LDA) as a generative topic model, thus
accounting for ’missing’ data when segmenting sequences
which contain actions unknown to the training system.

The segmentation problem was also solved in conjunction
with motion synthesis. Two fundamental approaches can be
distinguished. The first approach is based on the idea of mo-
tion concatenation [KGP02]. The authors construct a motion
graph from motion capture data which are given as clips of
elementary human motions. The synthesis problem is solved
as a motion extraction task on this directed graph. A sec-
ond principle is motion parameterization [KG04]. This pa-
per introduces a technique to retrieve motion elements sim-
ilar to a query from larger motion data sets which might
then be blended together according to user constraints. The
novel distance relation designed for this task has become a
paradigm of finding logically similar objects at interactive
speeds. Later works combine both these ideas [HG07,SH07]
to accomplish motion synthesis techniques for high quality
interactive applications. A most advanced combination of

the above-mentioned ideas is found in Min and Chai’s paper
on Motion Graphs++ [MC12]. The authors present a gen-
erative motion model which effectively enables a variety of
applications such as motion segmentation, recognition and
online synthesis.

3. Segmentation

The sensory input to our method is a prerecorded sequence
of motion capture data which is split up in a two-step pro-
cess. In the first step, the data are partitioned into distinct
temporally coherent activity segments, the second step fur-
ther investigates the structure of these activities in order to
find recurring patterns and, in effect, shorter motion primi-
tives potentially enclosed as part of the activities.

A motion sequence M is given as a collection of n poses
p1, . . . , pn each of which is represented by a feature vector
F = ( f1, . . . , fN) according to a frame-based set of the ge-
ometric positions of head, wrists and ankles in R3 (in our
case, N = 15). In order to create a neighborhood graph GM ,
we first construct a kd-tree from all given poses pi given in
the input stream, then search for similar poses within a radius
r. That is, we perform a similarity search with respect to the
features F in the sense that the similarity di j denotes the Eu-
clidean distance between the features Fi of pi and Fj of p j.
This search depends on two parameters: a radius r ∈ R and
the maximum number of nearest neighbors k ∈ N it is de-
signed to detect. As a result of this search with a fixed radius
r in the according feature space we obtain a set Si of nearest
neighbors for each pose pi. Any of the nearest neighbors in
Si is specified as a pair ( j,di j) of an index j to a frame in
the input motion and the Euclidean distance di j between the
query and this particular neighbor.

Evidently, the search is performed only once for every
frame of the input motion whereas the neighborhood infor-
mation resulting from the procedure is reused for the steps
of activity separation, detection for repetitions and clus-
tering. Our method is thus parameterized by the feature set
retrieved from the captured poses, the search radius r and the
maximum number of nearest neighbors k.

The sets of nearest neighbors are suitable to replace con-
ventional dynamic time warping by a graph based approach
(for more details on how GM can be used instead of time-
warping, see Krüger et al. [KTWZ10]). Dynamic time warp-
ing as a means to calculate an optimal match between two
given time series M and N with certain restrictions, creates
a path between these sequences in the following sense: The
sequences are matched non-linearly in the time dimension
to optimize for a similarity measure. Technically, a warping
path PM,N of length λ between two such sequences is given
as a pair of vectors (vM ,vN) where vM = (m1, . . . ,mλ) with
mi ∈ M meeting constraints such as mi ≤ µmi+1 for all in-
dices and vN = (n1, . . . ,nλ) with ni ∈ N meeting ni ≤ νni+1.
In our case, these were µ = ν = 2. The constraints on vM
could be seen as the continuity of the path P , while the pre-
conditions on vN correspond to the slope of the path.
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Figure 1: Toy example illustrating the relationship between
SSM and neighborhood graph GM . a): SSM of four consec-
utive poses with allowed steps indicated by arrows. Red ar-
row: step (1,1), blue arrow: step (2,1), green arrow: step
(1,2). b): Neighborhoods of each of the four poses, e. g. Si
is the neighborhood of the pose corresponding to entry (i, i)
in matrix a). c): Resulting neighborhood graph.

All nearest neighbors p j stored in the set of neighbor-
hoods S = {Si, i ∈ 1, . . . ,n} are considered as nodes of the
graph GM . The criteria according to which different nodes
are connected by edges in this graph, i. e. the accessibility
between poses, can be characterized by the concept of dy-
namic time warping. Therefore, we will briefly recall this
concept to clarify how to access one pose in the neighbor-
hood graph from another. Consider two poses p j ∈ Si and
p j∗ ∈ Si∗ . A valid time warping step to access the pose p j∗

from p j is defined as a pair (a,b) ∈ {(1,1),(0,1),(1,0)}
such that p j∗ = p j+b and Si∗ = Si+a. In particular, the pose
p j∗ is always an entry further below in the neighborhood list
Si∗ than p j is in the list Si, while Si∗ is either identical to Si
or lies to its right hand side. Figure 1 shows a toy example
to illustrate a possible scenario.

The local relations between poses pi and p j in the se-
quence M detected in the search can be visualized by a
sparse-self-similarity matrix (SSM) SM (Refer to Figure 2
for an example). Sparse self-similarity matrices are never
actually symmetrical because the pose similarities which
constitute the matrix block representation are restricted to
a maximum number of admissible neighbors. Therefore it is
possible, a neighbor pl is taken into account for pose pu,
which, in turn, does not appear to be in the neighborhood of
pl because the number k cuts the list of pl’s neighbors before
pu is found. Nevertheless, those parts of the matrix where a
minor diagonal has a fairly symmetrical match ’mirrored’
by the main diagonal arise from more perceptually coherent
matches in the nearest neighbor search. In short, preserving
symmetry constraints up to a point leads to more stable re-
sults.

One important property of the graph GM which we are
looking to exploit lies in the following observation: Each in-
dividual diagonal part of SM reflecting local similarities is
one connected component of GM .

In the following, it will be useful to remove all neigh-
bors that belong to the same connected component cc as
a given frame. Let the restricted graph which results from
this be denoted by Gcc (Refer to Figure 3 for a visualization
of connected components). A similar way of restricting GM

will also be convenient: restricting the neighborhood graph
to nodes which are temporally situated between two given
frames f1 and f2 results in a subgraph denoted Gf1,f2 .

The construction of the neighborhood graph MG, i. e. the
computation of all retrieved pose based nearest neighbors
for the whole motion sequence, is quite efficient being in
in O(kn logn). Moreover, the whole graph structure will be
reused in the later steps.

3.1. Segmentation into Distinct Activities

Referring to the typical SSM sketched in Figure 2 while tak-
ing into account that the heterogeneously structured diago-
nal blocks are representations of the activities we are look-
ing to isolate, we decided to pursue region growing as a
problem solving approach. There are three types of motions
represented by the matrix in the example: the first activity,
a shorter, intermediate action and the second activity. The
repetitive property of each larger action is reflected by sec-
ondary structures parallel to the main diagonal in the upper
left (respectively the lower right) part of the matrix, while
the diagonal part connecting the two reflects a transition. The
automatic detection of these three heterogeneous structures
is a restatement of the segmentation task in terms of decom-
posing the SSM into three smaller blocks.

The general idea is to start growing a square connected re-
gion from a seed in the upper left corner of the neighborhood
representation matrix. This region is gradually extended to
adjacent rows and columns as long as the number of nearest
neighbors in the updated region is increasing, too. If no new
neighbors are found in the larger region, the current region is
considered complete. A new region is then started from the
upper left entry of the remaining matrix where every entry
left of the last column respectively beneath the last row of
the just completed region block is removed from the original
matrix. This approach has one important precondition: the
main diagonal part of the matrix needs to be removed.
In terms of the graph representation (which is the setting the
actual solution is implemented in), the trick is to remove
all nodes from the graph which belong to the same con-
nected component as the first neighbor of the first (seed)
frame. While we visualized the process by means of the
self-similarity matrices for clarity and comprehensibility,
we really count the number of indices in the neighborhood
sets S(istart), . . . ,S(iend) where the index i is specified by
istart ≤ i ≤ iend where istart and iend are the respective start
and end frames of the motion segment corresponding to the
current region.
This region growing process is performed once as a forward
step, seeding the first region at frame S11 of the matrix, to
identify the end frames of repetitive patterns (see Fig. 2 (b))
and once as a backward step where the region growing pro-
cess is seeded at the last frame Snn of the input sequence.
This second step identifies the start frames of the actions
(Fig. 2 d)). Note that the worst case complexity of this step is
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Figure 2: Region growing for activity separation: a) Sparse
self similarity matrix with ground truth annotations; the la-
bel ’uncertain’ indicates an area of inconclusive user anno-
tations. b) Same matrix without main diagonal; also results
for forward step of region growing. c) Final outcome of seg-
mentation. d) Results backward step of region growing.

O(k n·(n−1)
2 ), the worst case being that the first region grows

from the first to the last frame of the input motion sequence.

3.2. Subdividing Activities into Motion Primitives

Once the input motion sequence is cut in to distinct activi-
ties, a search for recurrent motion primitives is performed for
each of the resulting individual segments. Consider a given
activity isolated by the first segmentation step, this could be
a walk as in the example shown in Figure 3. We want to find
the reoccurring units (such as steps) which the activity con-
sists of. Such units are responsible for minor diagonals in
the sparse self similarity matrix of the specific activity. Start
and end frames of the primitives correspond to start and end
frames of the minor diagonals. The basic idea is to use min-
imal cost warping paths in the matrix whose start and end
positions are associated with the start and end frames of the
minor diagonals. Thus, there is no need for an exhaustive
search since every minor diagonal corresponds to a connect
component in GM .
To this end the neighborhood graph is restricted to contain
only nodes associated with indices between the start and end
frame of the considered activity and the search is carried out
on this graph Gsf,ef.

All pairs of frames (vm1 ,vn1) associated with each of the
retrieved warping paths are considered as candidates initial
frames of a primitive. The set of all these warping paths is
examined according to the following criteria: the symme-
try coherence of the paths with respect to the similarity set-
ting and the projection coverage. These criteria will be dis-
cussed by the next two paragraphs in that order.

As observed in the given examples (Figure 3), there

0 50 100 150 200

50

100

150

200

time [frames]

tim
e 

[fr
am

es
]

0 50 100 150 200

50

100

150

200

time [frames]

tim
e 

[fr
am

es
]

0 50 100 150 200

50

100

150

200

time [frames]

tim
e 

[fr
am

es
]

CMU 86 trial 03 (30 Hz)
sparse self similarity matrix connected components final paths detected

a) b) c)

Figure 3: Illustration of connected components in GM . a)
SSM corresponding to a walking. b) Same matrix with its
color coded connected components. c) Optimal warping
paths highlighted by red lines.

is a conspicuous quasi-symmetrical structure in the self-
similarity matrices which we should bestow consideration
on to ensure the coherence constraints when detecting prim-
itives: the minor diagonals in the matrix block representation
encode important geometric information on the relationship
between the match candidates they depict. For instance, two
parallel stretches indicate there will be an warping path be-
tween the associated subsequences which has a slope near
to 1, i. e. the distortion of the time dimension brought about
by matching them will be small, in effect, pointing to a near-
linear motion match.

There are two objectives of path projection coverage.
Valid path candidates should not be shorter than 5 frames.
Also, when projected to either the rows i(m1), . . . , i(ml) or
the columns j(m1), . . . , j(ml) in the matrix index notation,
the length of the respective projection of the path should not
drop below the path length l by more than 50%. Note that
this corresponds to admitting only a mean slope of between
1
2 and 2.

Let ni denote the number of frames of the activity and
let nact and eact denote the number of nodes respectively of
edges in the neighborhood graph Gact of the activity act. The
number of nodes is nact ≤ min(ni,k)ni which in the worst
case means nact = kni. The number of edges eact in Gact suf-
fices eact ≤ nactnsteps where nsteps is the constant number of
admitted warping steps. Note for the cases where the length
of activity ni is below the constant upper threshold k, the cost
will be proportionally higher with nact|[0,k] = n2

i , so graph
construction can locally be even cubic in ni but since this is
only the case for ni < k, there is still a valid upper threshold
of O(ni). Searching warping paths with the DAG shortest
path algorithm is in O(nacteact) which is equal to O(ni

2) in
our case.

4. Clustering of Motion Primitives

We may cluster activity primitives obtained from the seg-
mentation according to their similarity. The unique charac-
teristic is we do this without fixing a parameter to determine
the number of clusters. The technical details can be found in
Section 3.2, since the techniques for extracting motion prim-
itives and grouping them together are strongly connected
by their dependence on the neighborhood graph structure
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paradigm. The frequency of occurrence of individual motion
primitive types as well as the semantical and possibly tem-
poral relation between them are valid information for later
applications. Conveniently, all information needed to create
a clustering in order to build such models is available in the
neighborhood graph structure which we discussed before.

Consider a set of motion primitives M=M1, . . . ,Mp ob-
tained from our algorithm. We build a similarity graph de-
noted by GM keeping track of the pairwise similarity of all
primitives occurring in the set M. Each node of the graph
is one primitiveMq with q ∈ {1, . . . , p}. An edge connect-
ing the nodesMh andMq is added if a valid warping path
can be found matching the first to the latter. Let sf and ef de-
note the respective start and end frames of the sequenceMq.
Then the similarity comparison for a primitiveMq against
all other motion primitives is equivalent to a search for a
path in the restricted similarity graph GM,{sf,ef}⊂GM . Thus,
we only need to resort to the graph GM computed priorly to
compute warping paths for each motion primitive, which can
be carried out as efficiently as before (refer to Section 3.2 for
the technical details). This yields a perceptually meaningful
clustering of motion sequences (see Section 5 for results),
where each cluster is represented by a connected component
in GM.

5. Segmentation and Clustering Results

To represent the motion capture series for the experiments
we used a frame-based feature set of the Euclidean positions
of head, hands and feet in a normalized pose space, i.e. with
respect to the skeleton’s root node. Additionally, the same
descriptors for the preceding and succeeding frames were
combined with these to ensure a greater time-coherence
of information. Enhancing the temporal consistency in this
manner goes back to [KG04] in their works on extraction
and parameterization of motions where they also introduced
the congenial point cloud dynamic time warping distance
measure we resort to for inter-sequence distance computa-
tion.
With this, we have a set Fstacked of 45 features (15 per
frame). Note that the time dependence parameterized by the
feature space causes the streamlined diagonal structures in
the sparse similarity matrices. A search radius of r = 64
centimeters in the described feature space and a number
k = 128 of admissible nearest neighbors was fixed for the
segmentation and clustering step. As opposed to Krüger et
al. [KTWZ10], we enhance accessibility in the neighbor-
hood sets by allowing {(2,1),(1,2),(2,2),(5,5)} as addi-
tional warping steps when creating the graph GM . This im-
proves the stability of the segmentation. For each pose pair
in GM which suffices the outlined accessibility condition an
edge is inserted between the two corresponding nodes. Since
the PCA-based [BP∗04] and the HACA-based [ZlTH13]
method use motion sequences from subject 86 of the CMU
database [CMU13] we also do this to admit a fair compar-
ison between our’s and the two methods introduced by the
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Figure 5: Means (green bars - our method, (light)blue bars
- (H)ACA) and variances (red glyphs) in the clusters of mo-
tion primitives. (a) Intra-cluster variance wrt DTW distance
of point clouds. (b) Same for the DTW distance according
to our feature set Fstacked. (c) Variance wrt the numbers of
frames of the segments in each cluster. The numbers in the
lower parts of the plot indicate the number of primitives in
each cluster: E. g. 15 double steps (ground truth) detected
correctly by our method, the other methods find 9 respec-
tively 11 segments.
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Figure 6: Accuracy values of different segmentation meth-
ods: Green color bar is our method, light blue is ACA, dark
blue HACA. Part (a): Results for the more tolerant accuracy
computations, i. e. admitting the transitions as valid classes.
Part (b): Evalutation wrt classes which are common to all
three methods. This introduces a stronger notion of accuracy
by counting strictly the classes both methods detect.

works of Zhou et al. Refer to Figure 4 for a comparative tab-
ulation of segmentation results. The same figure also shows
the results of the clustering step for CMU 86 trials by color
coding the resulting motion primitives according to the clus-
tering discussed in Section 4 respectively by the (H)ACA
methods. Note one important difference in the color codes
of our method as opposed to the ground truth: Black primi-
tives in our method are transfers between activities and are
not in the same cluster (they are the segments we wanted to
obtain by condition C1 on the list given in the introduction).
Black areas in the ground truth annotation signify the area
one standard deviation around the mean value of the three
user annotations provided by Zhou et al. [ZlTH13]. Note that
this standard deviation indicates there was a natural element
of uncertainty in the human labeling. Our transition primi-
tives pretty much coincide with these uncertainty areas.
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Figure 4: Segmentation results for CMU 86 trial 01 to 14. For each of the 14 trials, the first row displays the human ground
truth annotations, the second row compares them to our results. The results of the (H)ACA methods are given in the two lower
rows. Note that there is a variety of units of different sizes indicating that the actual length of motion primitives may vary
considerably.
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Section 5.3).

We further evaluated the performance of our approach on
the HDM05 [MRC∗07] database. We refer to the video for a
presentation and discussion of appealing results.

5.1. Accuracy Comparison

Since the methods introduce exactly the same classes of mo-
tions found in the segmentation processes but with the addi-
tion of uncertainty classes/transitions in our case, we intro-
duce two methods which both evaluate the achieved accu-
racy on a frame-wise level. For a segment s the first method
checks whether its frames do belong to exactly the same
motion class as the others in the same segment, the sec-

ond method counts right for transion/uncertainty, too. This
is done for all three methods. The results can be seen in part
(a) of Figure 6. The first method introduces a stronger notion
of accuracy by counting strictly the classes both methods
detect, whereas the second is more tolerant towards over-
laps of motion classes and preceding or succeeding tran-
sition classes. Part (b) of Figure 6 presents the results for
the strict accuracy computations. Both plots show that we
achieve significantly higher accuracy values. All in all, the
stricter evaluation got 88% for our method, (H)ACA got
79%, the more tolerant evaluation for ours achieved 97%,
HACA 92%, ACA 91%.

Figure 4 reveals that we have found a different number of
primitives in all activity clusters than the other two methods.
To evaluate the effect having more smaller segments has we
compute the intra-cluster variance within each of the derived
clusters.

5.2. Intra-Cluster Variance for Motion Primitives

The variance of a set of observed variables is commonly de-
fined as follows. Consider a set Y of observed values of a
variable Y with Y = (Y1, . . . ,Yη). The empirical variance is

Var(Y) =
1

n− 1

η

∑
i=1

(Yi− µ)2
, with µ the mean of all values in Y (1)
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The variance therefore depends on the distance measure used
to compare different variables and to compute the mean µ.
The established way to compute the distance between tem-
poral sequences is dynamic time warping which computes
the distance by accumulation of the local (frame-wise) dis-
tances from one segment to the warped version of the other.
However, the mean motion needed for the conventional for-
mula, is not defined: In probability theory mean and variance
of discrete variables are defined for random variables which
are functions to the same sample space. Finding a mean or
average segment for motion segments of different lengths is
a serious problem.
For a given cluster C the cumulative distance of each pair of
segments si and s j contained in the cluster:

D =
‖C‖

∑
i=1, j 6=i

(
DTWα(si, s j)

‖si‖

)
(2)

where ‖si‖ is the length of segment si and DTWα is ei-
ther the DTW distance of point clouds or of the features in
Fstacked. This yields a probability measure which is sensitive
to outliers and will detect scattered or inconsistent clusters.

In our evaluation we computed the point cloud DTW dis-
tance and also the distance in the feature space to compare
every pair of motion primitives of each activity. The accu-
mulated distance is normalized by the number of frames of
the reference motion segment. This distance is thus inde-
pendent of the lengths of motion primitives. The finer dis-
tinctions result in a lower intra-cluster variance for the clus-
ters: Figure 5 shows the variance between motion segments
clustered by our, the HACA and the ACA method. Since
the variance analytically depends on the employed distance
features, it is fair to compare some of the most reasonable
methods. The respective means are the green color bars for
our method, blue color bars for (H)ACA and the variances
are shown as red glyphs. Part a) shows the intra-cluster vari-
ance computed with respect to the DTW distance of point
clouds, b) does the same for the DTW distance according to
our feature set Fstacked. Part c) shows the variance with re-
spect to the numbers of frames of the segments in each clus-
ter. Our method significantly reduces the variance in each
of the DTW cases. This is an important effect of meeting
the conditions C1 and C2 by segmenting and clustering mo-
tion primitives which are very similar. The variance in the
numbers of frames is rather high in comparison which also
highlights a positive fact: While the length of segments is
strongly limited by both other methods (for the HACA be-
tween 45 and 80 frames regardless of the actual lengths of
motions), our method does not put limits on the length of
segments other than there should at least be a 5 frames which
corresponds to 0.17 seconds in a segment. In fact, this facil-
itates finding the correct number of motion primitives in the
first place as a double step in a run takes much less than a
second, so the primitives in a run cluster are shorter than the
ones of ’walk’. On the other hand, the slow kicks of the right
leg each take longer than two seconds so the primitives are

longer. Our clusters still preserve a certain variety of mo-
tion primitives but without containing transitions and other
actions (C1). Also, our motion primitives exactly reflect the
number of repetitions within activities (C2). For illustration,
there are five repetitions of the action ’rotate arms’ in one
of the takes (subject 86, take 03, frames 1600-1800). Not
accounting for this number but segmenting into only three
primitives yields much higher DTW distances between the
primitives which belong to this motion class.

5.3. Timings

On an Intel Core i7 4930K at 3.40GHz we were able to seg-
ment and cluster each motion in less than 15 seconds, using
our single threaded Matlab implementation. Refer to Fig-
ure 7 for detailed timings for the CMU 86 examples. The
figure also shows a case where the computation of the second
segmentation step takes longer: there is an activity which is
not broken down into smaller bits, so the runtime for the
primitive detection (step 2) in the resulting 20 second activ-
ity segment is a few seconds.

6. Applications

At the outset, we defined a list of benefits we wanted our
segmentation to entail. These features represent solutions to
common problems of motion analysis and motion synthesis.
Meeting the conditions on the list has a huge impact on both
fields which is demonstrated by the applications we envi-
sion.

6.1. Application to the Label Transfer Problem

We show how a small set of semantic annotations that might
be given for primitives or clusters of primitives can be used
to transfer annotation labels to unlabeled data. The results
illustrate that our segmentation method facilitates even the
most straightforward automatic labeling method due to their
simple and effective structure.

Consider a data base Sunknown = [U1, . . . ,Un] of n unla-
beled motion primitives as can be obtained by the segmen-
tation in Section 3.2 and a set Slabeled = [L1, . . . ,L j] of j
labeled motion primitives. For all labeled primitives Li, i ∈
[1, . . . , j] we build a knowledge base of annotated primitives
by computing a feature-space representation of Slabeled. Per-
forming a nearest neighbor search for all unknown motion
primitives in Sunknown and creating a similarity graph from
this information admits finding optimal warping paths be-
tween any of the Ls and Us by application of a subsequence
DTW. If there is a valid correspondence between the query
and a labeled primitive, the label associated with the primi-
tive with the lowest warping path cost is transferred.
By this example we particularly wanted to show that primi-
tives obtained by our method are well suited for the transfer
of semantic annotations, while we are well aware that there
are far more sophisticated machine learning techniques for
the learning task. However, even by our simple strategy we
achieved good results (see Table 1) which is chiefly due to
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the simple structure of our motion primitives which provides
comparability in the first place.
We carried out the following experiments: we build three dif-
ferent knowledge bases, consisting of the first, respectively
the first two and the first three takes of subject 86 from the
CMU data base. From these references we trained labels
which were tagged by a human tester for takes 4 to 14 of the
same subject. The labels were given an tested with respect
to segments rather than single frames. It should be noted
there is always a trade-off between achieving high precision
and achieving high recall by learning methods. As is eas-
ily comprehensible, the precision of out learning step needs
to be very high to enable correct synthesis results: Finding
action primitives of an unwanted type in a synthesis result
is highly inconvenient whereas not having a specific varia-
tion of a motion primitive represented in a result is accept-
able. The afore-mentioned table demonstrates we can reach
a very high precision. Note that a high level of recall was
not so much in the focus of interest for the above-mentioned
reasons. Transferring labels to 480 motion primitives needed
approx. 35sec. we refer to Table 2 for details.

Table 1: Results of the annotation transfer

KB: CMU 86_01
Examples: jump 2, kick 4, punch 4, walk 7

Class found correct missed precision recall
punch 6 6 15 1.00 0.29
walk 117 117 26 1.00 0.83

KB: CMU 86_01 & 86_02
Examples: jump 6, kick 4, punch 7, run 7, squat 6, stretch 4, walk 23

Class found correct missed precision recall
punch 14 14 7 1.00 0.67
run 31 31 5 1.00 0.86
squat 3 3 0 1.00 1.00
stretch 3 3 0 1.00 1.00
walk 126 126 19 1.00 0.87

KB: CMU 86_01 & 86_02 & 86_03
Examples: jump 10, kick 7, punch 7, run 18, squat 7, stretch 4, walk 39
Class found correct missed precision recall
jump 1 1 21 1.00 0.087
kick 2 2 9 1.00 0.18
punch 14 14 7 1.00 0.67
run 31 31 5 1.00 0.86
squat 3 3 0 1.00 1.00
stretch 3 3 0 1.00 1.00
walk 131 129 19 0.98 0.87

Table 2: Timings for the label transfer application. Note that
we are interested in high precision rather than high recall.

Annotation Transfer KB of 126 primitives, QDB of 480 primitives
total time: 35.3 sec knn search: 7.3 sec
construction of GM : 18.2 sec path search: 1.0 sec

6.2. Application to Motion Synthesis

Precomputed motion primitives can be used for motion syn-
thesis with classical motion graph techniques or as input for
statistical models as used in [MC12, KTMW08]. We claim
that with our segmentation and clustering method we ob-
tain motion segments that are superiorly suited for the ap-
plication of such techniques. To substantiate this, we show
a motion graph (see Figure 8) of motion primitives from the
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Figure 8: Motion graphs for synthesizing running mo-
tions based on segments computed with our and the HACA
method. Upper graph: green edges show possible transitions
out of first run node, red edges represent transitions to trans-
fer node. For clarity we omit all other edges within the run
cluster. The given adjacency matrix encodes this informa-
tion.

CMU data base (subject 86, trial 03). The upper graph con-
tains primitives we obtained by our method: one walk seg-
ment, all runs found in the entire sequence and the first seg-
ment after running. In our graph, there are nine primitives
classified as ’run’ (double step) and two transition phases.
The HACA-induced graph has four primitives labeled ’run’
(four steps each) and only a ’jump’ as optional target node.
This graph allows only for synthesis by revisiting the ’walk’
segment and then linearly traversing the other nodes. As op-
posed to this, our graph creates much more variation: Mul-
tiple ’run’ cycles may be visited from the first run node and
from many of them, a transfer to ’jump’ is a valid option. Ev-
ery node labeled ’run’ in our graph contains only one double-
step while HACA-induced nodes contain four. Observe that
all nodes in the ’run’ cluster could be accumulated to form
one super-node which corresponds to a single node in a Mo-
tion Graph++.

7. Discussion and Outlook

Even though the proposed method comes with a number
of benefits, there also cases where it may not work in a
straightforward way. Two scenarios seem particularly worth
discussing. Figure 9 shows two blocks from self similarity
matrices featuring two different motions. Part (a) is an ex-
ample of three kicks, two of which are segmented to be in
the same activity segment and the third is cut off the other
two. This is a situation where the first segmentation step has
failed. The result is still arguable since the second part of
the segmentation would have separated three motion primi-
tives (three kicks) which compensates the mistake of the first
step. The first two kicks are similar, while the third was done
with more force and different timing. While this is not a big
problem, future work should investigate such issues: there
might be helpful insight answering questions about how the
method deals with different styles and moods which were
not so much in the focus of this work but are also interesting
angles. Part (b) shows an example of a motion for which the
second segmentation step did not separate the primitives as
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Figure 9: a): SSM of 3 kicks, 2 of which are in the same ac-
tivity segment, the third is separated (first segmentation step
failed). b): Brushing dust off a dustpan (second segmenta-
tion step did not find primitives).

expected. The activity ’brushing dust off a dustpan’ which
is limited to the upper extremities and has low range of mo-
tion. Effectively, the standard radius is too high for this par-
ticular activity. Making the algorithm more adaptive towards
speed as well as defining more hierarchical approaches will
help alleviate such problems. Taking into account the local
contrary to full-body motion is a promising direction. Ques-
tions that also need answering regard the clustering of dif-
ferent moods and styles. So far the benefit of matching all
walks over just walks with a particular character or style is
not proven. Details on how to control this and what would be
the outcome will yet have to be determined. The dependence
on the periodicity of poses in the input motions is a mi-
nor drawback. Systematic evaluation on the used databases
showed that only a small part of them is concerned by this
limitation. The majority of the affected poses originate from
transfers between periodic actions or stationary postures like
sitting or t-poses. Another noteworthy limitation is given by
over-segmentation as in example 5 (frames 400 to 600) of
Figure 4. Future work will develop suitable re-clustering.

8. Conclusion

We have presented a solution to the segmentation problem
of deriving motion primitives from sequences of human mo-
tion. We have created activity segments and motion primi-
tives and clustered the latter mastering the problems C1 and
C2 by exploiting self-similarities within input motions. The
comparison of our results with the ones obtained by state-of-
the-art segmentation techniques has pointed out the benefits
of segments, as shown by motion graph based synthesis and
annotations transfer. The evaluations show the profound im-
provements in quality.
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