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Abstract Lower back pain is one of the leading causes for musculo-
skeletal disability throughout the world. A large percentage of the pop-
ulation suffers from lower back pain at some point in their life. One non-
invasive approach to reduce back pain is postural modification which
can be learned through training. In this context, wearables are becoming
more and more prominent since they are capable of providing feedback
about the user’s posture in real-time. Optimal, healthy posture depends
on the position (sitting, standing, hinging) the user is in. Meaningful
feedback needs to adapt to the current position and, in the best case,
identify the position automatically to minimize necessary interactions
from the user. In this work, we present results of classifying the positions
of users based on the readings of the Gokhale SpineTracker� device. We
computed various features and evaluated the performance of K-Nearest
Neighbors, Extra Trees, Artificial Neural Networks and AdaBoost for
global inter-subject classification as well as for personalized subject-
specific classification.

1 Introduction

Before diving into the matter, we need to fix some terminology. While generally
used interchangeably in everyday language, throughout this paper we will differ-
entiate between position and posture. Position will refer to the (static) state a
human body is in, e.g., sit, stand, bend, hinge. Posture describes how a position
is realized by a person. Thus, a position resembles a passive state description
whereas posture becomes a multi-factor dynamic process. Factors therein include
bone or, more general, skeletal alignment as well as muscle activation.

According to the Global Burden of Diseases, Injuries, and Risk Factors Study
2016 [1], lower back pain is one of the leading causes for years lived with disability
throughout the world. It was reported that two major causes of musculoskeletal
disability are lower back pain and neck pain. Due to the sedentary lifestyle
and long sitting hours at work, a large number of people are at a high risk
of developing spine related issues. The low back pain fact sheet [2] explains
that people who are not physically fit have weak back and abdominal muscles.
Consequently, these muscles cannot properly support the spine and thereby cause
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Figure 1. Placement of the SpineTracker sensors on a subject’s back. Posture training
with real-time feedback of the spine shape. Screenshots of the iPhone app: Spine curve
and Spine simulation.

pain in the long run. If, in addition, such individuals are obese, more stress is
put on the muscles, bones, and discs at the back which also leads to pain.

Gokhale Method Enterprise Inc.1 is a Silicon Valley-based company special-
ized in posture training. According to this company’s philosophy, the key to a
healthy spine is healthy lifestyle and correct posture. Hence it provides various
training classes to interested customers so that they can improve their pos-
ture. Gokhale Method has developed several posture supportive products, one
of them being the Gokhale SpineTracker� to support posture training in classes.
This device comprises of five wearable sensors equipped with three-axis accel-
erometers. It is attached along the spine of the user to provide a reasonable
approximation of user’s spine shape. The data obtained through this device can
be visualized in real-time via an iPhone application [3]. See Figure 1 for some
examples.

Since healthy spine shape strongly depends on the current position, an auto-
matic detection of the position would be highly beneficial. In this work, we use
data of the Gokhale SpineTracker� to automatically detect the position the user
assumed. We have done so by using supervised machine learning techniques for
the classification of a user’s posture into different classes (positions), i.e., sitting,
standing, and hinging. These positions are especially challenging to be classified
from accelerometer readings as they are mostly static. Thus, there are only slight
changes in the sensor readings over time. In particular, this makes the distinc-
tion between sitting and standing very hard. This problem is further increased
by the variability of postures between subjects.

The remainder of this paper is organized as follows: We give an overview on
related work in Sect. 2. Section 3 briefly describes the datasets (3.1) this work is
based on and covers feature computation (3.2). An overview on used classification
techniques is given in Sect. 4. The different classification experiments performed
in this work are described in Sect. 5. We present the classification results in
Sect. 6 and conclude the paper in Sect. 7.

1 https://gokhalemethod.com/
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2 Related Work

Motion capturing techniques. Capturing and recording of human motion data
has become a standard technique in may domains, such as computer animation,
sport sciences [4], biology [5], and rehabilitation [6]. Optical motion capture with
passive markers and a large array of cameras has become the gold standard of
capturing motions due to its high temporal and spatial resolution and accur-
acy [7]. However, optical motion capture is limited in the capture volume and
its general usability. The user has to wear a motion capture suit and undergo
a complex calibration process which is not suited for everyone. Thus, alternat-
ive techniques based on inertial sensors, especially with few accelerometers only,
were developed to capture full body motions [8,9,10,11]. While full body motion
capture based on few sensors gives a good overview of the general motion, it is
not yet possible to capture all body parts in high spatial resolution. Specialized
systems were developed to more accurately capture specific body parts, such as
faces [12,13], arms [14], legs [15], hands [16,17,18], and the spine [19,20].

Supervised machine learning techniques have proven to be especially useful
in the field of computer vision-based human motion capture. Examples hereof
include capturing of motions from video [21,22] and retrieval of single poses from
one image [23,24]. Machine learning has also been successfully applied for recon-
struction of motions from other sensor modalities [8,9,10]. An application beyond
the capturing of motions is the classification of motions. Here, identifying certain
actions [25,26] was done as well as the detection of biometric parameters [27].

Spine shape reconstruction and motion classification. A vast variety of sys-
tems and technologies have evolved around the capture the shape of the spine
for posture monitoring. Such technologies range from ribbon-shaped fibre-optic
sensors [19], over strips of strain-gauge elements [28], accelerometers [29,20] to
various inertial sensor-based systems [30,31,32,33]. Many of the aforementioned
systems use posture or activity classification as field of application.

StraightenUp+ [33] is a vest with three inertial sensors vertically mounted
to the vest’s back. Using the sensor data of 30 participants, the authors use
decision trees in order to identify physical activities such as sitting and walking
from a fixed sequence of eight activities. Wong and Wong [30] developed a smart
garment with three inertial sensors for posture training. Their system defines
posture change as change in inclination between pairs of neighboring sensors. In
a small posture-feedback study, this information is used as an indicator for the
straightness of the spine and hence an indirectly indicator for, e.g., slouching.
In a larger study (429 participants) Consmüller et al. [28] used the Epidonis
SPINE system to record five repetitions of a choreographed sequence of back
movements consisting of rotations in the sagittal, frontal, and transverse plane.
Using linear discriminant analysis they successfully classify the resulting back
motions. Fathi and Curran [32] place three inertial sensors on cervical, thoracic,
and lower lumbar spine to record and classify two positions (hunch, slouch) using
template-string matching. Distributing five 3D accelerometers equidistantly over
the spine, Jeyhani et al. [29] differentiate sitting positions (straight, hunch, arch)
based on trends in the per-sensor mean inclination.
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There are generally few works for posture classification that use real-world
data and consist of a large amount of data from a wide range of users. This
is especially true for classification of spine shapes (postures) using wearables.
This paper contributes to filling this gap by providing an evaluation of different
classification techniques for both inter-subject and subject-specific posture clas-
sification of postures in three different positions that are meaningful for posture
training in a database of almost 4,200 spine movements from over 100 subjects.

3 Data Processing

This section provides a general overview of the data and data processing steps
used in this work. It includes details on different datasets and a description of
features derived from the raw data.

3.1 Datasets

The dataset is obtained from the sensors via the iPhone application for Gokhale
SpineTracker�. The sensors’ data are stored in a binary file, which is uploaded
to one central server. Per default, data are captured with a sampling frequency
f of 50 Hz. Each file contains the following relevant information:

Position refers to the position the user assumed. In this work, we focus on
standing, sitting, and hinging as these are part of the standard posture
training. Other positions are ignored also because we do not have sufficient
samples for learning approaches.

Event describes the event occurring at the end of each motion sequence. User
interactions trigger events in the iPhone application (closed application, con-
nection aborted, or switched posture for instance). In this work, we are in-
terested only in sequences that are ended by the event snapshot. This event
signifies that the user took a snapshot of his pose and confirmed the posi-
tion he has taken the snapshot from. Therefore, the position label is reliable
in this case. In other events the user might have switched to another pose,
without changing the position in the application. Thus, there would be many
mislabeled data for other events, which is not suitable for supervised learning
approaches.

Readings contains a table with timestamps and the raw sensor data.

From the data uploaded by the application, a set of data was extracted for this
work. This raw dataset (DBraw) contained 15,873 files, belonging to 150 subjects.
Preprocessing, included removal of files corresponding to the wrong event type,
removal of corrupt files, and removal of files with less than one second of data.
The complete dataset (DBfull) we continued to work with contained 4,178 files
from 106 subjects, finally. For some experiments we separated a partial dataset
(DBpartial) consisting of 1,457 files covering 37 subjects.
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3.2 Feature Computation

We computed various types of features based on the sensors’ accelerometer data.
Each of the five sensors captures acceleration values in three axes resulting in
a 15-dimensional multivariate time series of raw accelerations. Features were
computed on windows of fixed temporal length s (s ∈ [1, 10]sec), varying the
time before a snapshot event occurred. Based on these fixed-length segments,
we compute different feature types as listed below:

Raw features Here, the original, raw data obtained from the sensors are taken
as feature. This results in a (15 · f · s)-dimensional feature vector.

Statistical features: For each of the 15 time series, we computed eight ba-
sic statistical measures: length, mean, standard deviation, minimum value,
maximum value, median, 25% quantile, and 75% quantile. This results in a
120-dimensional feature vector.

Fourier features The absolute Fourier transform of the data was considered
for this feature type. For each of the 15 time series, their discrete Fourier
transform was computed using the numpy.fft.fft() function of Python’s
scipy library [34]. The result is (15 · f · s)-dimensional feature vector.

Angular features This feature type stores the forward tilt τacc of each sensor.
For static poses, it can be assumed that the sensor is not displaced from its
position. As a consequence, that sensor will only measure acceleration due
to gravity pointing downwards, and we can compute its forward tilt as

τacc = arctan2 (az,−ay), (1)

where az and ay denote the acceleration of the sensor measured in its local z-
axis and y-axis respectively [20]. For each frame, we obtain five forward tilts,
one from each sensor. Additionally, the difference of forward tilt between two
consecutive sensors was computed (four values for each frame). Hence the
dimensionality of this feature set is ((5 + 4) · f · s).

3.3 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most common linear dimen-
sionality reduction techniques. In a first step, a linear mapping of the feature
space is computed, where dimensions are sorted by variance in the data. Dimen-
sions in this space are called Principal Components (PCs). In a second step, one
can truncate PCs representing small variance in the data. This allows for the
reducing the dimensionality, while maintaining control over the degree of data
loss in the compressed space.

4 Supervised Machine Learning Techniques

We provide a short introduction to the supervised machine learning (SML) tech-
niques used for posture classification in this section. All of the described tech-
niques have a specific set of parameters. The concrete parameter values we used
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are listed and described in Table 1. Machine learning techniques generally re-
quire the dataset to be split into two independent datasets, one for training
the classifier (training dataset) and one for assessing its performance (validation
dataset). After training, the classifier can be used for making predictions on the
unknown dataset (test dataset).

Table 1. List of classifiers, parameters, their short description, and values used in this
work for classification. The parameter n specifies the number of samples in the training
set. A detailed description of the parameters can be found at scikit-learn [34].

Classifier
(model)

Para-
meter

Description (values used)

KNN k number of nearest neighbors (k = n/d, d ∈ {10, 20, . . . , 100})
w weighing of neighbors (w ∈ {uniform (U), distance-based (D)})

Extra-Trees e number of decision trees (e ∈ {10, 100, 250, 500})
fsq function to measure the quality of a split (fsq ∈ {Gini impurity

(G), entropy (E)})
ANN hi number of neurons per hidden layer

fact hidden layer activation function (fact ∈ {identity (i), logistic sig-
moid (l), tanh (t), rectified linar unit (r)})

fopt weight optimization function (fopt ∈ { family of quasi-Newton
methods (l), stochastic gradient descent (s), specific stochastic
gradient-based (a)})

l type of learning rate (l ∈ {const. (c), invscaling (i), adaptive (a)})
AdaBoost e number of decision trees (e ∈ {10, 100, 250, 500})

c classifier used (all possible combination of Extra-Trees)

4.1 K-Nearest Neighbor Models

K-Nearest Neighbor (KNN) [35] classifiers store features of the training dataset
as vectors. For classifying a test instance, the distance between that test element
and all elements in the training dataset is computed. Distance metric used most
commonly for this purpose is the Euclidean distance. For a pre-defined number
K of closest elements of the training set, a majority vote is performed. The
class belonging to most of the K neighbors is assigned to the test sample. It has
been observed that this classifier is successful for datasets in which the decision
boundary is very irregular [36].

Bhatia et al. [37] describe the strengths and weaknesses of KNN. Advantages
of this classifier are that it trains very fast, is robust to noisy training data and
is effective on large training datasets. One of its biggest limitation is that the
optimal value of K needs to be determined. Additionally, it is not clear which
distance metrics and attributes shall be used to obtain best possible results.
Weighted KNN [37] technique can be used to overcome the inherent limitation
of KNN to assign equal weights toK nearest neighbors. In this technique, weights
are assigned to the neighbors based on their distance from the test instance. In
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this work, KNN models are created using the function KNeighborsClassifier()

of scikit-learn library of Python [34] and the weights parameter is varied as either
uniform or distance based weights.

4.2 Extremely Randomized Trees (Extra-Trees) Models

In a decision tree [38], leaf nodes represent classes and internal nodes represent
different tests on a set of features. The branches depict the flow in the tree based
on logical conjunctions of nodes considered until now. The aim is to develop a
model which can predict the class of a test dataset element based on a selec-
ted set of features. It employs top-down divide and conquer by considering the
information entropy of different features. The complete process [35] consists of
three steps: 1. Determine feature and threshold to partition the training set at
each internal node. 2. At each node check whether to continue splitting or to
make it a leaf node. 3. Assign class labels to leaf nodes with minimum estimated
error rate.

According to Ho [39], one of the biggest advantages of decision trees is that
they are easily to interpret. They perform well on large datasets, but might
learn highly irregular patterns from the data if the trees are very deep. Thus
the resulting model will highly fit the training data but may perform poorly
on test data (overfitting). To overcome this limitation, meta estimators of de-
cision trees such as Extra-Trees (ET) [40] are used. Extra-Trees combine mul-
tiple decision trees which are trained on different sub-samples of the dataset. The
overall performance is determined by calculating the average of performance of
all decision trees. In this work, we used the extra trees model implemented in
ExtraTreesClassifier() function of scikit-learn library of Python [34].

4.3 Artificial Neural Network Models

Artificial Neural Network models (ANN) simulate the functioning of neurons
in the brain. The most common ANN model used is a multi-layer perceptron
with backpropagation [38]. Its architecture [35] consists of three types of layers:
1. The input layer feeds the feature vector of the training set to the first hidden
layer. 2. One or more hidden layers weight all prior outputs differently and add
a bias term. 3. The output layer processes the output of the final hidden layer.
It contains a unit representing each class.

ANN [41] are capable of detecting complex non-linear relationships between
classes and the features associated with the training data. Using ANN it is pos-
sible to detect all possible interactions between the features. But these networks
exhibit black box behavior, i.e., it is not possible to identify the exact causal rela-
tionship between the variables which lead to a particular outcome. In this work,
ANN models are created using MLPClassifier() function of the scikit-learn
library [34].
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4.4 Adaptive Boosting Models

Adaptive boosting (AdaBoost) is a meta estimator. It constructs a strong clas-
sifier using weak classifiers which can be any other supervised machine learning
algorithm with low accuracy on the given data [42]. From the list of classifiers
used in this work and considering the implementation of AdaBoost in scikit-learn
library of Python, we decided to use the Extra-Trees classifier as a weak classifier
for running AdaBoost. This algorithm will first fit the Extra-Trees model on the
original dataset and then fit the additional copies of the classifier in such a way
that the these classifiers focus more on the incorrectly classified instances [43].
The function used here is AdaBoostClassifier().

4.5 Validation schemes

Validation schemes are used to determine how accurate the predictions made by
the models are. We used two different cross validation (CV) schemes:

n-fold cross validation: In this strategy, the given dataset is partitioned
into n equal subsets. Each subset is once used as a validation dataset and re-
maining n− 1 subsets form a training dataset. This process is repeated n times
and the overall performance is calculated by computing the average over all n
runs. In this work, we have used three-fold CV for model selection and ten-fold
CV for assessing performance of the models.

Leave one subject out cross validation (LOSOCV): LOSOCV is sim-
ilar to n-fold cross validation. Instead of splitting the data arbitrarily into n
subsets, the data are grouped by p subjects. This strategy helps identifying how
well the data from p− 1 different subjects are capable of classifying the data of
the singled out subject.

5 Evaluation Approach

The general classification approach, we follow in this work, consists of the fol-
lowing steps: First, a feature set is computed. Feature sets can consist of any
combination of the features described in Sect. 3.2. Second, a feature selection
step is carried out. Third, we select the best performing models for each feature
type based on the outcome of a three-fold CV on DBpartial. Using this inform-
ation we perform classification on DBfull. There are small differences between
the global classification approach and the personalized classification approach,
which are explained in this section. Figure 2 outlines the overall approach.

5.1 Global Classifiers

In this strategy, feature computation and selection are performed separately for
DBpartial and DBfull. Model selection is performed on DBpartial and the inform-
ation obtained from this step is used for classification of DBfull. The steps are
explained in detail below:
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Figure 2. Flowchart of the complete classification approach. Blue arrows mark the
flow for global classifiers, red arrows represent the personalized classifiers.

Feature Computation: Raw, statistical, Fourier, and angular features are
computed for all specified segment lengths. Additionally, we generate more fea-
ture types by considering all possible combinations of the four features mentioned
above. For each of these feature sets, we compute the PC projection and use them
as another feature set. Hence there are 30 feature sets for each segment length.

Feature Selection: This step is based on the Extra-Trees classifier. For each
feature set, we perform a ten-fold CV on all possible combinations of parameters
for Extra-Trees models. In each validation step, we store each model’s perform-
ance (accuracy) and feature importances. Feature importance reflects a feature’s
relevance in the classification. Based on each model’s highest average accuracy,
we select the best models. From these we compute the union of the previously
saved topmost features. These features are used in our subsequent analysis.

SML Models: The feature sets used in this step are the ones that have been
obtained after feature selection step.

1. Model Selection - Since there are a wide variety of possible models it is better
to start with the DBpartial for identifying the best models for each feature set.
For each feature set, we perform three-fold CV with all possible models. We
compute performance measures for assessing the performance of classifiers.
We then determine the best models by considering the best values for each
performance measure keeping seconds, features constant. We generate a list
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of models that have been identified as best with specific feature sets and save
them in SelectedModels.

2. For DBfull, we perform ten-fold CV using the information in SelectedMod-
els. We compute performance measures and determine the highest accuracy
for each feature set. We also perform LOSOCV for each subject in DBfull.

Validation of Model Selection: To validate our model selection step, we
compared the average ratio of misclassified samples during three-fold CV for
DBpartial with the average ratio when performing ten-fold CV onDBfull. It turned
out, that performance is comparable (e.g., 0.24 for three-fold CV on DBpartial
and 0.25 for ten-fold CV on DBfull). Hence, it is reasonable to infer model and
feature combination that would work the best for the DBfull dataset by using
information from DBpartial.

5.2 Personalized Classifiers

In this strategy, classification is performed separately for each subject which has
at least ten samples and further contains at least three samples of each, hinging,
standing, and sitting. The complete workflow is shown in Figure 2. There are
small differences in this approach compared to the global classifier approach.
Here, in feature computation, the 30 feature sets are computed for each sub-
ject separately instead of computing feature sets for all samples in the dataset
together. Feature selection is performed in a similar manner as in Sec. 5.1.
Model and feature combination is determined from SelectedModels which had
been generated in Sec. 5.1. This information is used to perform classification us-
ing ten-fold CV on feature sets obtained after feature selection.

6 Results

In this section, we present the main results obtained through global and person-
alized classifier approaches.

6.1 Global Classification Results

In global classification, ten-fold CV on DBfull resulted in highest average clas-
sification accuracy values between 0.61 and 0.80 depending on the feature sets.
The highest average classification accuracy was achieved using PC of statistical
feature set, while the lowest average classification accuracy was obtained with
PC of angular feature set. Various feature sets performed well with an average
classification accuracy of 0.79.

For PC of statistical feature set, the highest average classification accuracy
of 0.80 was achieved by using eight specific AdaBoost models and two specific
Extra-Trees models at a window size of s = 1 sec before the event. Table 3 (a)
shows values of the respective confusion matrix. Figure 3 shows the average clas-
sification accuracy and standard deviation of several specific models for window
sizes ranging from s = 1 sec to s = 10 sec for ten-fold CV on DBfull. We found
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that all models performed best at a window size of one second. Considering
longer motion sequences did not improve classification results in this scenario.
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Figure 3. Average classification accuracy of ten-fold CV for DBfull (blue dots and
lines) with standard deviation (vertical cyan lines) using PC of Statistical feature set
generated at s = 1, 2, . . . , 10 seconds before the event. Grey dots mark the accuracy
value in each fold of the ten-fold CV. The title of each plot contains the classifier and
the values of the parameters used to train that model.

In ten-fold CV, samples for training and validation are taken randomly. Thus,
we cannot derive concrete conclusions how well the classification works for a new,
unknown user. To this end, we performed LOSOCV. In this scenario, all subjects
have highest classification accuracy greater than 0.50 i.e. with different feature
sets and model combinations it is possible to classify each subject with accuracy
at least more than 0.50. 65% and 46% of the total number of subjects have
highest classification accuracy of over 0.80 and 0.90 respectively. 37% of the
total number of subjects reached a classification accuracy of 1. Figure 4 shows
a plot representing the percentage of subjects which have accuracy x or more
where x = 0.0, 0.1, . . . , 1.0. Table 3 (b) shows the confusion matrix at a window
size of s = 1 sec. This quality was achieved which for 32% of the subjects.

6.2 Personalized Classification

Samples belonging to 41 different subjects in the DBfull dataset satisfied the
requirements for personalized analysis described in Sect. 5.2. Hence, they have
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Figure 4. Percentage of subjects with an average classification accuracy of x or more
for x = 0.0, 0.1, ...., 1.0 in DBfull. On the vertical axis 1.0 represents 100%.

Table 2. List of features and classifiers including used parameter values which per-
formed best in the classification.

Feature Classifier Value of Parameter

Angular AdaBoost e = 500 & c = Extra Trees with
e = 500 & Entropy

Raw ANN hi = 900, fact = l, fopt = s & l = a

PC of Statistical ANN hi = 600, fact = l, fopt = s & l = a

Raw & Angular ANN hi = 800, fact = l, fopt = s & l = a

PC of Statistical & Angular ANN hi = 300, fact = l, fopt = s & l = a

PC of Statistical & Angular & Raw ANN hi = 300, fact = l, fopt = s & l = a

PC of Statistical & Angular & Fourier ANN hi = 600, fact = l, fopt = a & l = i

been considered for further per subject analysis. We performed ten-fold CV for
each of these subjects and calculated the average accuracy for each subject.
From these average accuracies the models with highest average accuracies were
identified keeping model category, feature sets, segment length and subject con-
stant. The obtained models were further reduced by selecting the models having
highest average accuracies at all segment lengths for a given subject and feature
set. A detailed specification of these models is given in Table 2. The average
accuracy over subjects for the models in Table 2 lies between 0.70 and 0.85. Fig-
ure 5 shows average accuracy and standard deviation plots of four such models.
Tables 3 (c) and (d) show the confusion matrix obtained for a subject with av-
erage classification accuracy of 84% and 98% respectively. By using a certain set
of features and models it is possible to classify the postures of 15 subjects with
100% average classification accuracy resulting in an ideal confusion matrix. To
get an overall idea of the performance of different models and features for the 41
subjects, Fig. 6 shows a heatmap of average classification accuracies. Each cell
in the heatmap denotes the average accuracy obtained for a given subject on the
y-axis and model as well as feature combination on the x-axis. The horizontal
view of the heatmap shows that there are certain subjects which have accuracies
of over 50% in almost all possible model and feature combinations. The ver-
tical view shows that certain model and feature combinations fail to accurately
classify any subject.

7 Conclusion and Future Work

In this work, we presented a series of approaches for classification of a user’s po-
sition, based on posture readings of a wearable device. We tested various feature
sets and classifiers using global and personalized classification approaches.



Preprint - accepted for publication 
In proceedings of ICCSA 2019 

July 2019, Saint Petersburg, Russia 

13

Table 3. Confusion matrix values for global and personalized classification approaches.
HI abbreviate hinging, SI sitting, and ST standing. Sub-tables (a) and (b) contain
results from the global classifier. In (a), ten-fold CV was used, in (b) LOSCOV. Sub-
table (c) and (d) show two exemplary results from the personalized classifier.

True & HI SI ST HI SI ST HI SI ST HI SI ST

Predicted

HI 0.93 0.02 0.01 1 0 0 0.99 0.00 0.01 1.00 0.00 0.00

SI 0.04 0.73 0.21 0 1 0 0.00 0.72 0.18 0.00 1.00 0.03

ST 0.03 0.25 0.78 0 0 1 0.01 0.28 0.81 0.00 0.00 0.97

(a) (b) (c) (d)

It turned out that a personalized classification approach can better predict
the position than a global approach if sufficient data is available for training
of such personalized models. We found that 65% of the subjects have an av-
erage accuracy of larger than 0.8 for global classification. In our case, it was
feasible to perform personalized analysis on 38% of total number of subjects.
We observed that 97% of these subjects reached an average accuracy of over 0.8
and for 68% the average accuracy climbed to over 0.9. Hence, it is possible to
come up with personalized posture classification based on the Gokhale Spine-
Tracker� readings, even if only few samples are given per subject and position.

This classification can be further extended to differentiate between good and
bad postures so as to notify the user whenever they are in the wrong posture
for a particular task. Additionally, allowing a user to train custom positions
and adding these into classification is of interest and challenging when only
few data points are present. Further extension is also possible by modifying the
sensors to improve the performance of the automated system. The accelerometer
sensors can be further developed into inertial sensors by extending them with
a gyroscope. This would provide more information and potentially improve the
classification of postures.
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11. Farella, E., Benini, L., Riccò, B., Acquaviva, A.: Moca: A low-power, low-cost mo-
tion capture system based on integrated accelerometers. Adv. MultiMedia 2007(1)
(1 2007) 1–1

12. Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime performance-based facial an-
imation. ACM Transactions on Graphics 30(4) (07 2011) 77:1–77:10

13. Cao, C., Bradley, D., Zhou, K., Beeler, T.: Real-time high-fidelity facial perform-
ance capture. ACM Transactions on Graphics 34(4) (07 2015) 46:1–46:9



Preprint - accepted for publication 
In proceedings of ICCSA 2019 

July 2019, Saint Petersburg, Russia 

15

ModelInfo

1
25Su

bj
ec

t

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Heatmap of the average accuracy for DBfull. Subjects are on the y-axis and
feasible combinations of PC feature, time range and model on the x-axis.
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