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Efficient Unsupervised Temporal
Segmentation of Motion Data

Björn Krüger, Anna Vögele, Tobias Willig, Angela Yao, Reinhard Klein, Member, IEEE, and Andreas Weber

Abstract—We introduce a method for automated temporal
segmentation of human motion data into distinct actions and
compositing motion primitives based on self-similar structures
in the motion sequence. We use neighborhood graphs for the
partitioning and the similarity information in the graph is further
exploited to cluster the motion primitives into larger entities of
semantic significance. The method requires no assumptions about
the motion sequences at hand and no user interaction is required for
the segmentation or clustering. In addition, we introduce a feature
bundling preprocessing technique to make the segmentation more
robust to noise, as well as a notion of motion symmetry for
more refined primitive detection. We test our method on
several sensor modalities, including markered and markerless
motion capture as well as on electromyograph and accelerometer
recordings. The results highlight our system’s capabilities for both
segmentation and for analysis of the finer structures of motion
data, all in a completely unsupervised manner.

Index Terms—Temporal segmentation, time series clustering,
human motion analysis.

I. INTRODUCTION

HUMAN motion capture, once associated with producing
special effects for films and video games, is commonly

used today in diverse applications ranging from health care to
consumer electronics. The ever-increasing simplicity to capture
data by different sensor modalities, along with the sheer amount
of existing recorded data creates a demand for motion analysis
methods that are computationally efficient, yet with minimal
human input. Dividing streams of motion data into perceptu-
ally meaningful segments is a precursor to almost all analysis
and synthesis methods. For example, creating a statistical mo-
tion model calls for data already preprocessed into well-defined
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activity segments. Further segmentation of these activities into
individual cycles is greatly beneficial for action recognition, es-
pecially when repetitions should be counted, or for compressing
motion data. However, the quantity of captured data does not al-
ways allow for time-consuming manual segmentation. As such,
unsupervised segmentation and learning of motion primitives is
a topic of interest that has been addressed in the multimedia
[1]–[4], computer vision [5]–[12], and computer graphics
[13]–[17] communities.

We propose a segmentation method which identifies distinct
actions within motion sequences and further decompose such
actions into atomic motion primitives, all in an unsupervised
fashion. For example, in a sequence of a person who first walks
and then breaks into a run, we can separate walking from run-
ning, as well as the individual steps of the walk and run. We
identify both the actions and the motion primitives by exploit-
ing the self-similarities that exist in the motion sequences.

We pose segmentation as an efficiently solvable graph prob-
lem, as first presented in [16] for segmenting motion capture
data. To further improve computational efficiency, we employ
a Neighborhood Graph [18]. In addition, we propose three new
contributions, making the method robust and applicable to mo-
tion data from varying sensor modalities. First, we propose a
novel feature bundling technique for preprocessing motion fea-
tures. The feature bundling allows for compact model repre-
sentations of the motions, as well as robustness to noise, to
accommodate modalities such as markerless motion capture
or accelerometers. Second, we introduce a notion of motion
symmetry, and exploit this as a means of refining primitive de-
tection. Considering symmetry often leads to primitives with
more physical meaning—for instance walking cycles can be
split into left and right steps. Third, we propose a unique clus-
tering method for the detected motion segments also based on
self similarities which needs no assumption on the number of
clusters. We show the applicability of our method on a wide va-
riety of motion datasets, ranging from markered and markerless
motion capture to accelerometer and surface electromyography
(EMG) recordings.

Defining segments based on self-similarity gives our method
several advantages over previous segmentation methods. First, it
allows us to distinguish not only the distinct action segments, but
also the transition segments between actions. Explicit treatment
of transitions has not been addressed so far in previous works
on unsupervised segmentation [9], [10], [19]. However, it has a
direct impact on synthesis methods [19], [20]. Not handling the
transitions forces synthesized sequences to include additional
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primitives from possibly unrelated transitions, which is neither
convenient nor intrinsically motivated.

The second advantage of leveraging self similarity is that the
resulting motion primitives are highly consistent, with similar
start and end points from sequence to sequence. Previous ap-
proaches often yield primitives which are phase-shifted from
one another [10]. Statistical models built on unaligned primi-
tives will be noisier and less representative of the actual motion.
Note that our motion primitives are not limited to being full mo-
tion cycles i.e. those starting and ending in the same body pose,
but can also be parts of a cycle or entirely non-cyclic in nature.

The rest of this paper is organized as follows. Section III intro-
duces the feature bundling technique while Section IV describes
the motion segmentation into actions and subsequent motion
primitives. In Section V, we introduce a notion of symmetry to
help refine the segmented motion primitives. In Section VI, the
clustering of the motion primitives is discussed. We present seg-
mentation results from motion sequences of varying modalities
in Section VII, and conclude by discussing the achievements and
limitations of our novel method as well as possible extensions in
Section VIII. Source code for the algorithm is available online.

II. RELATED WORK

Temporal segmentation is relevant in a number of different
fields such as data mining [21], [22], audio and speech pro-
cessing [23]–[25], and behavioural pattern recognition [26]. In
statistical terms, the segmentation problem can be posed as
a change point detection task [22], which has been extended
to a multi-dimensional setting [26] based on the established
Bayesian techniques [27]. From a signal processing point of
view, kernel-based methods for change-point analysis [28], [29],
Hidden Markov Models (HMMs) [23], and audio thumbnail-
ing [24], [30], have been used. Below, we outline attempts to
automatically segment human motion data.

Pose clustering: One segmentation strategy is based on clus-
tering poses in a time series [3], [31]–[35]. Beaudoin et al. [31]
proposed to extract motion motifs as building blocks of graphs.
Chew et al. [32] come up with a fuzzy clustering approach to
compress motion data. Gall et al. [33] and Kadu and Kuo [3]
create temporally meaningful pose clusters associated with unla-
beled actions. Bernard et al. [34] proposed a search and analysis
system called MotionExplorer based on similarity features. De-
pending on the aggregation level, shorter or longer motion seg-
ments were found to be associated with isolated human actions.
However, Bernard’s main focus was on a new visual representa-
tion of motion data rather than analysis tasks as discussed here.
Li et al. [35] introduced a cluster in a regularized subspace to
tackle segmentation.

Exemplars and template models: An alternative approach for
segmentation is to apply example segments or pre-computed
templates and match them to test sequences. For example, Lv
et al. [36] combines HMMs and AdaBoost to learn discrimina-
tive feature templates from labelled segments for action recog-
nition and segmentation.

Müller et al. [14], [37], [38] used geometric features to
learn templates for fast solving of matching problems such as

annotation and retrieval [37], [38]. Adaptive segmentation [14]
is a fundamental result of using geometric feature vector se-
quences to compare motion capture data streams at a segment
rather than frame level. Another set of related approaches [39],
[40] learn intrinsic regularities for segmentation and demon-
strate that motion capture data can be segmented using only
a limited set of example motions, even if the examples are of
different actions. Template approaches work well if the tem-
plates are available; our work is targeted at cases in which the
exemplars or templates are not known beforehand.

Motion synthesis: Segmentation has also been addressed
in conjunction with motion synthesis. In motion concatena-
tion [20], a motion graph is constructed from clips of motion
capture data; new sequences are then synthesized by motion
extraction on this graph. In motion parameterization [41], mo-
tion elements are retrieved from large datasets based on sim-
ilarity to a query motion, and then blended according to user
constraints. The novel distance relation used in [41] has be-
come the standard for finding similar motion clips at interactive
speeds.

Later works [19], [42]–[44] combine these ideas to accom-
plish synthesis techniques for high quality interactive applica-
tions. Min and Chai’s Motion Graphs++ [19] effectively en-
ables motion segmentation, recognition and online synthesis.
All these approaches have a need for meaningful motion primi-
tives that can be clustered to build statistical motion models or
at least to allow for interpolation. Typically these are found by
manually selecting some examples and then retrieving similar
exemplars from a database.

Unsupervised motion segmentation: The methods most simi-
lar to ours are those which segment motions in an unsupervised
way. Partitioning motion sequences into behaviour segments by
a PCA-based method was proposed by Barbic et al. [13]. This
segmentation is similar in spirit to the first step of our approach
for isolating distinct actions. The quality of local PCA models
is tracked temporally; new activities are defined when the old
PCA model cannot capture the data variance and a new PCA
model is required. This approach cannot separate activities that
fit into one local model and also cannot detect individual rep-
resentations. Jones et al. [45] combine a PCA approach with
linear regression to derive a metric that can be used to segment
unknown motion sequences.

The groundbreaking work of Zhou et al. [9], [10] uses (hierar-
chically) aligned cluster analysis (H)ACA to temporally group
poses into motion primitives which are then assigned to different
action classes. These approaches use kernel-based projections
and a time alignment to compare motion primitives of vary-
ing length. An initial segmentation of uniform length is refined
by the clustering approach though the final resulting segments
do not vary much from the initial length. A major difference
between the work of Zhou et al. and ours is that they do not
consider transitions between distinct actions. Transition frames
are assigned to previous or following action segments, thereby
reducing the consistency of the primitives. More recently, Os-
manlıoğlu et al. [46] used metric embedding in combination
with hierarchically separated trees to segment video sequences
in the spatial and temporal domain.
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Fig. 1. (a) 2D example for density estimation: original data points (red circle), 64 nearest neighbors (green dots connected in time), the direction of movement
(red arrow), the 1D subspace used for optimization (blue lines), and the resulting position (red cross). (b) 3D PCA projection of the feature sets of a mocap
sequence (CMU 86_11). The three sections of loops correspond to repetitions of differing arm rotation movements as indicated by representative body poses.
(c) Bundled feature points for the same motion capture sequence. Figure is best viewed in color.

III. FEATURE BUNDLING

Semantically similar or visually similar motions, even when
represented in dedicated feature spaces, may still differ notably
due to variations in the performance of each action or cycle
within the same action. Inspired by the idea of edge bundling
used in visualization [47], [48], where similar edges of a graph
are visualized together for a better overview, we propose a
bundling of similar features. The goal of feature bundling is to
topologically align disjoint motions that belong to the same ac-
tion class but exhibit differences in the feature space. As opposed
to filtering, bundling deals with differences due to performance
variation in recorded motions. Note that our feature bundling
technique has completely different objectives and methodology
from bundle adjustments used in 3D reconstruction and is sim-
ilar in name only.

In our bundling technique we use a density estimation based
optimization to adjust each point orthogonally to the direction
of its trajectory in the feature space. This effectively project the
features onto a smoother manifold (see Fig. 1 for an overview).
Vejdemo-Johansson et al. [49] considered a related idea by com-
puting a typical motion cycle of a set of similar periodic motions.

For each frame i of an input sequence of length N , a feature
vector Fi where i ∈ [1 . . . N ] is computed; the specific feature
depends on the sensor modality (more details in Section VII).
The goal is to compute a new feature F̂i that is representative
of Fi , but closer to other features at the same stage of the same
motion cycle. Specifically,

1) For each Fi , find k nearest neighbors within all other
features Fj , j ∈ [1 . . . N ] \ i.

2) Compute direction of movement di for Fi and build a D−1
dimensional subspace Si orthogonal to di .

3) Optimize F̂i using a kernel density estimate of Fi in Si

based on the k nearest neighbors.
4) Backproject F̂i to the original feature space for the final

representation.
For the k-nn search we use a kd-tree as per [18] to find

similar frames within the motion sequence. We do not fix the
search radius since distances between sample points may vary

greatly. Instead, a fixed number of k nearest neighbors ensures
that the model reflects the local density of samples.

The direction of movement di for frame i is given by the nu-
merically centered five-point derivative at this frame. Construct-
ing an orthogonal subspace prevents the overall data structure
from collapsing. The basis of this subspace is computed via QR
decomposition of a D × D matrix, where the first column vec-
tor is set to the direction of movement, while all other entries
are filled with random numbers.

The local kernel density estimation is based on the k nearest
neighbors and characterizes the data distribution of Fi with
kernel function KH , i.e. a symmetric multivariate density with
bandwidth matrix H

KH i (x) = |Hi |− 1
2 K

(
Hi− 1

2 x
)

. (1)

Since our data is assumed to be Gaussian, we use a general
approximation of the bandwidth matrix which minimizes the
mean integrated squared error (MISE; refer to Scott’s rule in
Chapter 6 of [50]) by

Hjj = σjk
−1

d + 4 (2)

where j = 1, . . . , d and σj is the standard deviation of the jth

variate. We use the multivariate Gaussian kernel

K(x, μ, σ) = e−
1
2 (x−μ)′Σ−1 (x−μ) (3)

with x = (x1 , . . . , xd), μ = (μ1 , . . . , μd) the vector of empiri-
cal mean values, and Σ the sample covariance matrix.

Note that the kernel density estimation is compatible with a
preceding dimensionality reduction step. In fact, it is possible
to reliably estimate the kernel density function without increas-
ing the sample size k [50]. Therefore, we apply a PCA to each
set of samples in advance to reduce the dimensionality while
keeping 97.5% of the sample set’s variance. In principle, any di-
mensionality reduction technique is applicable; we prefer PCA
for its simplicity and speed, though other approaches have been
explored extensively [13], [51], [52].

The optimization searches for the new position F̂i and is
posed as an minimization problem. The offset Oi from Fi is
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Fig. 2. Comparison of SSSMs with original and bundled features: (a) shows the SSSM of original features extracted from the input motion; (b) shows the same
SSSM of the bundled features; (c) and (d) include mirrored features (highlighted in red) of the original and bundled features respectively. Note how the SSSM in
(c) based on the original mirrored features is less consistent than that of the bundled features in (d).

optimized with respect to the density estimation, resulting in
the final feature position F̂i

F̂i = argmin
Oi

KH i (F + Oi). (4)

IV. SEGMENTATION TECHNIQUE

The input to our method is a multi-dimensional time series
recording of a motion trial. First, the local neighbors of each
frame in the sequence are found. The sequence is then parti-
tioned into distinct temporally coherent action segments; a sub-
sequent step partitions the actions based on recurring patterns,
i.e. shorter motion primitives.

A. Local Neighbors

A motion sequence M is given as a time series of m
points p1 , . . . , pm , each represented by a feature vector F =
(f1 , . . . , fN ) of dimension N . The features are modality spe-
cific and stacked in the time dimension, yielding a vector
representation [pi−f1 , pi , pi+f2 ]

′ of features over a window
w = [i − f1 , i, i + f2 ] in a higher dimension.

Within the feature space, we define a radius r to search for
neighbors. Given no prior knowledge of the input data, we in-
troduce a generalized search radius R which is independent of
the feature set time-window size w and input data dimension-
ality N . R is defined as the search radius for a window size of
|w| = 1 and dimensionality of N = 1; the search radius is then
rescaled as r = R

√|w| · N .
We construct a kd-tree from all feature points Fi in the input

stream and then search for the points located within the radius
r based on the Euclidean distance dij between the features Fi

of pi and Fj of pj . As a result of this search, we obtain a
set Si of neighbors for each data point pi . The neighbors are
specified as pairs (j ∈ [1 : M ], dij ) of an index j to a frame in
the input motion and the distance dij between the query point
and neighbor j.

The sets of neighbors for a motion trial is then converted into
a sparse self similarity matrix (SSSM). Self-similarity matrices
are commonly used in human motion analysis for tasks rang-
ing from retrieval [41] to multi-view action recognition [53].
A SSSM, as shown in Fig. 2(a), is generated by initializing
an empty M × M matrix M. For each frame i ∈ [1 : M ]

we set the entries Mi,j∀k ∈ Si to the values of dij stored in
Si . An illustration of this connection is also given in Fig. 4(a)
and 4(b). An example of the effect of feature bundling to the
neighborhoods is given in Fig. 1(a). A 3D projection of in-
put and output feature points of a motion sequence are given
in Fig. 1(b) and 1(c), respectively. A comparison between a
sparse self similarity matrix (SSSM) based on the original
and the bundled features is given in Fig. 2(a) and 2(b) re-
spectively. Note that we use the matrices only for visualiza-
tion in this work; for efficiency purposes, computations are
performed directly on the sets of neighbors or derived data
structures.

B. Segmentation Into Distinct Activities

Fig. 3 shows an example of an SSSM with two cyclic activi-
ties, running and jumping, separated by an ’uncertain’ period of
inconclusive user annotations. The cyclic activities are charac-
terized by structured diagonal blocks. We separate activities by
searching for these characteristic blocks, using region growing
to determine the blocks’ borders.

A connected region starts as a seed in the upper left corner of
the neighborhood representation matrix M1,1 . Contents of the
lower triangular matrix below the main diagonal are then probed
using scan lines. The triangular region is gradually extended to
adjacent rows as long as the number of nearest neighbors in
the updated region increases. If no new neighbors are found
between frame i and i + w in the larger region, the current
region is considered complete. The parameter w is introduced
to handle noisy data; we set w = 8 in all our experiments. With
such a stop criterion, neighbors from the main diagonal of the
SSSM cannot be considered—otherwise these elements would
also be counted in the region-growing and result in a large region
covering the entire SSSM. We remove all main diagonal entries
in the proximity corresponding to one second (in time), based on
observations that cyclic behaviour in motion data does not occur
at higher speeds. A new region is then started from the upper
left entry of the remaining matrix Mi,i , with scan lines probing
the content of the lower triangular matrix between Mi,i , Mi,j

and Mj,j , where j is the current frame.
The region growing is performed once as a forward step, seed-

ing the first region at frame M1,1 of the matrix to identify the
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Fig. 3. Region growing for activity separation. (a) Sparse self similarity matrix with ground truth annotations; the label “uncertain” indicates an area of
inconclusive user annotations. (b) Same matrix without main diagonal; also results for forward step of region growing. (c) Results backward step of region growing.
(d) Final outcome of segmentation. Note that in the actual computation of the region growing steps (b) and (c) the main diagonal is removed. It is displayed in this
representation for visualization purposes though.

end of repetitive patterns [see Fig. 3(b)] and once as a backward
step, seeding at the last frame Mn,n of the input sequence first
to identify the start of the actions [Fig. 3(c)]. The lower right
corners of the forward region growing correspond to end frames
of an action, while the upper left corners of the backwards step
correspond to the start frames of an action. Areas in between
are considered transitions between the repetitive parts.

For efficiency, we work on the sets Si of neighbors, counting
the number of entries in the neighborhoods between the seed
frame and the current scan line index. Because we work with a
symmetric matrix, this is equivalent to scanning triangular parts
of the sparse similarity matrix.

Compared to the region growing approach of Vögele
et al. [16], where neighbors were counted in a quadratic region,
the method presented here is computationally more efficient.
For each scan line, only one set of nearest neighbors needs to be
considered, whereas in [16], all preceding neighbor sets were
reconsidered for each growth step. The runtime complexity is

therefore reduced from O
(
k n(n−1)

2

)
to O(kn) in our approach,

where k is the maximum number of nearest neighbors and n is
the number of frames of the motion trial; in the worst case the
first region grows over the whole SSSM.

C. Subdividing Actions Into Motion Primitives

After segmenting the input sequence into distinct actions,
we search for primitives within each action. Consider a single
action, such as walking in Fig. 5; we want to find the reoccurring
units, i.e. steps of the activity. Such units are responsible for the
minor diagonals in the SSSM of the specific activity, with start
and end frames of each unit corresponding to the start and end
position of a diagonal. Rather than searching for the diagonals’
starts and ends in the SSSM, we use an alternative neighborhood
graph representation and simplify the problem to finding the
shortest path. We note that if no reoccurring primitives are found,
the action segment is considered itself a single primitive.

Alternative representation by a neighborhood graph: The
neighbors of pj in a specific activity stored in the set of neigh-
borhoods S = {Si, i ∈ 1, . . . , n} can be considered nodes on
a graph Gact. The criteria for connecting the nodes in this
graph is based on accessibility between the points and can
be characterized by the concept of dynamic time warping.

Fig. 4. Toy example illustrating the relationship between the SSSM and the
neighborhood graph GM . (a) SSSM of four consecutive points with allowed
steps indicated by arrows. Red arrow: step (1, 1); blue arrow: step (0, 1); green
arrow: step (1, 0). (b) Neighborhoods of each of the four points, e. g. Si is the
neighborhood of the point i. (c) Resulting neighborhood graph.

Fig. 5. Illustration of connected components in Gact. (a) SSSM corresponding
to walking. (b) Same matrix with its connected components colour coded.
(c) Optimal warping paths highlighted by orange lines.

Consider two points pj ∈ Si and pj ∗ ∈ Si∗ . A valid time warp-
ing step to access the point pj ∗ from pj is defined as a
pair (a, b) ∈ {(1, 1), (0, 1), (1, 0)} such that pj ∗ = pj+b and
Si∗ = Si+a . In particular, the point pj ∗ is always an entry fur-
ther below in the neighborhood list Si∗ than pj is in the list Si ,
while Si∗ is either identical to Si or lies to its right hand side
(Si∗ = Si+1). Fig. 4 shows a toy example to illustrate a possible
scenario.

An important property of the graph Gact which we exploit
lies in the following observation: each diagonal of the matrix
Mact reflecting local similarities is one connected component of
Gact. For the next steps, it is useful to work only with neighbors
belonging to the same connected component cc for a given
frame, with the resulting restricted graph denoted as Gcc (Refer
to Fig. 5 for a visualization of connected components).

Computation of warping paths: To calculate an optimal match
between two given time series A and B with restrictions,
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dynamic time warping creates a path between these sequences.
The sequences are matched non-linearly in time to optimize for a
similarity measure. Technically, a warping path PA,B of length
λ between two such sequences is given as a pair of vectors
(vA , vB ) where vA = (a1 , . . . , aλ) with ai ∈ A meeting con-
straints such as ai ≤ νai+1 for all indices and vB = (b1 , . . . , bλ)
with bi ∈ B meeting bi ≤ νbi+1 . In our experiments, we use
ν = 2. The constraints on vA and vB could be seen as upper and
lower limit of the paths slope.

The sets of neighbors Si are suitable to replace conventional
dynamic time warping based on the neighborhood graph de-
scribed above; more details on this is given in [18]. Since each
diagonal in the SSSM translates to one connected component
in the graph, searching for an optimal warping path reduces to
finding a shortest path through the connected component Gcc .
To this end, we add one additional start and end node to the
graph. The start node connects to all nodes corresponding to
the first set of neighbors in the component, while the end node
connects to all nodes corresponding to the last set of neighbors.
Now, the warping path can be found efficiently by searching the
shortest path from the start to the end node. The costs of a path
is the accumulated distance of the included neighbors.

We further limit the set of warping paths per activity based on
their length and slope. First, paths covering less than five frames
of the motion trial are discarded; such paths are found for very
short but similar segments existing between longer primitives.
Although these segments may be semantically meaningful, we
ignore them to prevent extremely short primitives. Secondly,
paths with average gradients less than 0.5 and larger than 2 are
also discarded. Such paths represent mapping between motions
whose speeds vary by a factor greater than two. We want to avoid
such cases, e.g. when a longer standing sequence is mapped to
a few poses in the middle of a walking cycle.

For each valid warping path Pi we have a pair (ai, bi) repre-
senting the starting position within the SSSM. These positions
correspond to the bordering frames between motion primitives.
We only check if any candidates are closer than 5 frames and if
so, we consider only the one with a corresponding warping path
with smaller cost.

Complexity analysis: The critical computation step for de-
tecting primitives is building the graph representation from the
sets of nearest neighbors. Creating this graph requires checking
all possible connections of each neighborhood entry in N to
other entries by a number of s possible steps. For each of the
neighborhoods of each activity there is a maximum of k entries.
Since the number of edges is limited by O(k · s · n), the search
for connected components is limited to the same complexity,
with an overall run time of O(k · s · n).

V. SYMMETRY OF MOTION DATA

Motion data often contains intrinsic symmetries which can be
exploited during analysis. We focus on mirrored motions and be-
gin by defining the plane of symmetry. Let X = {x1 , . . . , xJ } ∈
R3×J be a geometric model of a moving subject, i.e. an ordered
set of joints. A motion XM is a multi-dimensional trajectory X

of X over time. Let PX be a plane spanned by two perpendicular
vectors which connect joints or linear combinations of joints.

For human models, the plane of symmetry is the sagittal
plane, i.e. the vertical plane dividing the body into left and
right. A motion is symmetric with respect to this mirror plane
if, for a set of descriptive features F , at least one pair of fea-
tures (fi, fj ) ∈ F can be switched without imposing a (sig-
nificant) change on X. The concept of the mirror plane can
be transferred from humans to other models; all vertebrates
are bilaterally symmetrical with two pairs of appendages such
as limbs, fins or wings and the sagittal plane is also a mirror
plane.

The symmetry of an action segment XA , based on its mirrored
version X ′

A mirrored at the sagittal plane, may be characterized
as follows:

1) XA is highly symmetric if its primitive segmentation is
exactly the same as that of X ′

A .
2) XA is exclusively phase-shift symmetric if its primitive

segmentation has no cuts in common with X ′
A .

3) XA is asymmetric if the primitive segmentation of X ′
A

returns no cuts at all.
Naturally, a mixture of two or more situations is possible

when an action contains different types of motion primitives.
Therefore, it makes sense to treat each action found by the
action segmentation separately. We make use of phase-shifted
symmetry in order to distinguish phase-shifted primitives like
single steps in walking.

VI. CLUSTERING OF MOTION PRIMITIVES

Clustering the motion primitives allows us to find the fre-
quency with which primitives occur and have an indication of
the semantic and temporal relationships between different prim-
itives. This is of great interest for both motion synthesis and
motion analysis. Note that for our unique clustering algorithm
the number of clusters does not need to be specified.

A cluster graph GM is used to store the similarity information
between the motion primitives. In this graph, each primitive is
represented as a node. Consider a sparse self similarity matrix
associated with a motion M ; the motion primitives mq are rep-
resented by squares on the main diagonal. The goal is to search
for valid warping paths between each pair of motion primitives
mi and mj . To this end, we can build a neighborhood graph (see
Section IV-C) including the neighbors in the rectangle region
that is spanned when comparing mi and mj . We then try to
find the shortest path in this submatrix from entries at the top
to the bottom. If this shortest path satisfies a minimum length
requirement and has a slope inside the range of valid slopes
(see Section IV-C) we add an edge between the corresponding
nodes in GM. After the algorithm has gathered all similarity
information, a search for the strongly connected components is
performed on GM. Each strongly connected component repre-
sents a cluster of motion primitives.

The algorithm presented above is a modified version of the al-
gorithm of Vögele et al. [16]. Both approaches perform equally
well for clustering, though the current approach is more efficient,
since only small neighborhood graphs between each pair of
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Fig. 6. Segmentation results for CMU 86 trial 01 to 14. For each trial, the first row displays the human ground truth annotations, the second row displays our
results, and the third to fifth rows display competing methods [9], [10], [16]. Note the variation in length of actual motion primitives.

primitives are constructed, while in the previous work one large
graph was constructed over all the neighbors of the trial.

VII. EXPERIMENTS

We report on a series of experiments to show the effectiveness
of our approach. First, we compare our results with previous
methods on a set of motion capture data. Second, we show that
meaningful results are obtained when using different sensor
modalities such as accelerometers and EMG sensors. Finally,
we apply our approach to Kinect skeleton data and show that
our motion primitives are meaningful and consistent with of
human-annotated key frames.

A. Segmenting Markered Motion Capture Data

We apply our segmentation method to the motion sequences
of subject 86 of the CMU database [54], as was done by Zhou
et al. [9], [10]. We compare our segmentations to theirs and our
previous work [16] in Fig. 6. We show a number of improve-
ments in comparison to [9], [10], the most notable being the
ability to segment fine-structured motion primitives in nearly
all cases. We are also able to distinguish different styles of exe-
cuting a task. For example, in the case of wiping a window/black
board (CMU, trial 12 of subject 86), Zhou et al. [10] group all the
primitives together as the same type (dark grey blocks), while we
are able to distinguish between back and forth wiping motions
versus circular wiping movements (various shades of grey).

Authorized licensed use limited to: FH Koeln. Downloaded on November 22,2022 at 10:34:35 UTC from IEEE Xplore.  Restrictions apply. 



804 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 4, APRIL 2017

Fig. 7. Accuracy values of different segmentation methods. Light blue bars
refer to our method (bundled features only), purple is our method (mirrored
features only), blue is bundled and mirrored features combined, red is Vögele
et al. [16], dark green is Zhou et al. (ACA) [9], and light green is Zhou et al.
(HACA) [10] using (a) the strict evaluation, counting strictly the classes all
methods detect and (b) the more tolerant evaluation which allows transitions as
valid classes. For both evaluations the bundled and mirrored features give higher
accuracy values in average compared to the original features and the (H)ACA
based approaches. The bundled features especially have a better effect on the
accuracy compared to the mirroring.

Secondly, we are able to distinguish symmetric movements
and separate primitives accordingly. Examples include rotation
of the body in Trial 7 (variations of blue and green blocks),
dribbling the ball in trial 14 (dark green, light green, red and
orange blocks). Other approaches cannot distinguish between
left versus right steps of the foot, nor ball handling with the left
versus right hand.

Accuracy comparison: Our method produces the same action
classes as [16] and nearly the same as [9], [10]. We use the
same methods as [16] to evaluate the segmentation accuracy
on a frame level, using both a strict and a tolerant evaluation,
and present the results in Fig. 7. For a motion primitive s,
the strict method checks whether all of s’s frames belong to
the same action class as the other primitives found from the
same segment; the tolerant method eases the constraint to both
the same action class as well as transition/uncertainty segments.
Due to the finer division of primitives found by our method,
there are different clusters representing the same motion. For
example, walking consist of alternating left and right steps. For
consistent evaluation with previous methods, we have assigned
such symmetrical counterparts to the same class, i.e. the ‘left
step’ cluster and the ‘right step’ cluster are both assigned to the
walk action. We achieve significantly higher accuracy values for
both types of evaluation, with an average of 90% for our method,
88% for the method of Vögele et al., and 79% for (H)ACA
for the strict evaluation and 99% in comparison to 97% for

Fig. 8. (a) Evaluation of clusters produced by our method, the method of
Vögele et al. [16], the HACA method, and the ACA method. The example at
hand is trial 3 of CMU subject 86. The respective means are given by the blue
color bars for our method, red for Vögele et al., and (dark) light green color
bars for (H)ACA, with variance shown as error bars. Note that lower distances
reflect more consistent clusters. (b) Evaluation of clustered results produced by
our method. Here we plot the mean D, with variances shown as error bars as in
(a), but for the case where both bundling and symmetry features are included.
This is one case where additional motion classes are introduced by exploiting
symmetry of motion: there are two classes of steps and also two classes of
“kicks.” The distinctions are caused by different types of symmetry: walking
is phase-shifted and kicking included one part which was symmetrical (more
static) and one which was asynchronous.

Vögele et al., 92% for HACA and 91% for ACA for the tolerant
evaluation. Applying segmentation to the label transfer problem
is discussed in Vögele et al. [16] and based on our current values,
we anticipate that applying feature bundling would yield similar
results.

Intra-cluster variance for motion primitives: Dynamic time
warping is an established distance measure for temporal se-
quences and accumulates the local (frame-wise) distances from
one segment to the warped version of the other. For a given clus-
ter C, a cumulative distance measure D, tallied over all pairs of
segments si and sj contained in the cluster can be defined as

D =
‖C ‖∑

i=1,j �=i

(
DTWα (si, sj )

‖si‖
)

(5)

where ‖si‖ is the length of segment si and DTWα is the DTW
distance of point clouds as defined by Kovar et al. [20]. Note that
D is particularly sensitive to outliers and will detect scattered
or inconsistent clusters.

By making finer distinctions between motion primitives, we
achieve lower intra-cluster variances for the clusters. Fig. 8(a)
compares the clustered results by our method, the method of
Vögele et al. [16], the HACA [10] and the ACA [9] method.
Fig. 8(b) shows the same low variances when mirrored features
are included. The given example is one case where additional
motion classes are introduced by exploiting symmetry: there
are two classes of ‘steps’ and also two classes of ‘kicks’. The
distinctions are caused by different types of symmetry. While
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Fig. 9. Maps displaying the accuracy for various combinations of the pa-
rameters. The generalized radius R is plotted on the horizontal axis, choices of
stacking offsets are plotted along the vertical axis. A stacking offset of [−5, 0, 5]
is a concatenation of frames at times i − 5, i and i + 5. (a) and (b) show the
maps based on the bundled features, where (a) is the stricter and (b) is the more
tolerant version. (c) and (d) show the same based on the bundled features, where
(c) is the stricter and (d) is the more tolerant version.

walking is phase-shifted, kicking includes one symmetric part
(more static) and one phase-shifted part (where the leg was up).

Our clusters group together a variety of motion primi-
tives without transitions and primitives from other actions. In
particular, our primitives reflect exactly the number of repeti-
tions within actions. For illustration, there are five repetitions
of ‘rotate arms’ in one sequence (see Fig. 6, Subject 86 trial
03, frames 1600-1800) and we segment this into exactly five
primitives. Zhou et al.’s methods [9], [10] do not account for
the inherent repetition and segment the action into three prim-
itives, thereby yielding much higher DTW distances between
these primitives.

Over all clusters of all trials from actor 86 we obtain an
average cluster variance of 1.18 (min: 0.52, max: 2.66, std:
0.42) for mirrored and bundled features, 1.17 (min: 0.58, max:
2.58, std: 0.37) for bundled features and 1.69 (min: 0.69, max:
3.45, std: 0.54) for the original features. Compared to HACA
2.51 (min: 0.48, max: 8.78, std: 1.53) and ACA: 2.56 (min: 0.86,
max: 9.42, std: 1.50).

Parameter evaluation: The most important parameters for
our segmentation method are the search radius (Section IV-B)
and the temporal window for feature stacking (Section IV-A).
We found that our method is insensitive to either parameter and
show the segmentation accuracy in Fig. 9 for various parameter
settings for the strict and tolerant evaluations for both original
and bundled features. All plots show that the accuracies are high
for nearly all possible combinations of parameters.

Our region growing in the activity separation step stops if
no new neighbors were found in a window of w frames. We
tested our approach with various window sizes and computed
the strict accuracy measure for evaluation. Fig. 10(a) shows
that our method is very robust with respect to the window size,
with accuracy dropping only when the window gets very large
(128 frames).

For segmenting the motion primitives, there are the additional
parameters of the allowed min. and max. value of the warping
path slope ν (Section IV-C). Following the conventions of [18],

Fig. 10. (a) Accuracy (strict evaluation) for varying window sizes w of
the region growing step. w = 8 (red bar) was chosen for our experiments.
(b) Average number of motion primitives per activity based on the minimal and
maximal slope of the warping paths. ν = 2 (red bar) was chosen for all other
experiments in this work.

[41], we set the slope to be within the window 1
ν and ν. We eval-

uate ν by computing the average number of primitives found
per activity on the dataset, with results shown in Fig. 10(b).
If ν is smaller than 2, the number of primitives drastically
decreases, while larger values for ν do not increase the number
of primitives. For all our experiments, we set ν = 2 to permit
extreme temporal deformation between motion segments. Our
experiments indicate that such warps did not occur in the CMU
dataset.

Timings: A timing breakdown shows that action segmenta-
tion (including feature bundling and knn search) is, in practice,
approximately linear in the number of frames. Theoretically, the
worst case complexity for region growing is O(kn), i.e. when
the first region grows from the first to the last frame of the input
motion sequence. This case was not observed in practice. The
shortest path searches for primitive detection is quadratic with
respect to the number of frames per activity. Finally, the cluster-
ing step also computes in linear time (in the number of motion
primitives).

On an Intel Core i7 4930 K at 3.40 G Hz we were able to
segment and cluster each motion sequence in the CMU examples
(up to 3000 frames in length) in less than 15 seconds using
our single threaded Matlab implementation. In comparison, the
HACA method of Zhou et al. [10] has at least cubic complexity.
In the experiments with short trials described in this section,
both methods produce approximately the same timings.

B. Combined Motion Sensors

To demonstrate our algorithm’s effectiveness on different sen-
sor modalities, we recorded a set of electromyography (EMG)
and acceleration motion data using a Delsys Trigno wireless
acquisition system. EMG recordings show the electrical activ-
ity produced by skeletal muscles and are commonly analyzed
in biomechanics and neurology. Acceleration recordings show
the local accelerations from change in sensor velocity and are
commonly analyzed in biomechanics and sports science. Nearly
all ‘wearables’ use accelerometer readings to analyze user ac-
tivity. Typically, analysis of EMG and accelerometer signals is
done on sequences already segmented into motion cycles; the
segmentation is almost always done manually, and frequently re-
lies on other readings such as motion capture or video data. Our
automatic segmentation technique can significantly improve the
work flow in domains using EMG and accelerometer recordings.
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Fig. 11. Exemplary results of two trials. As can be seen from the key point
visualization, this third example is also an interesting situation for the consis-
tency measures of subject 86 of the CMU. The color codes correspond to the
different motion clusters the primitives were assigned to by our method. The
results are very similar between the data sets, even between the original and the
re-enacted recordings.

We take recordings from one trial subject who was asked to re-
enact the sequences of subject 86 in the CMU database. Results
of two repetitions of trials 3 and 12 are compared to the CMU
originals (see Fig. 11). The raw EMG readings consist of data
streams of 16 sensors, each documenting the activation of large
skeletal muscle groups (refer to Appendix C for documentation).

All EMG recordings were pre-processed in a standard fash-
ion: the signals were rectified, re-sampled from 2000 Hz to
30 Hz and smoothed by a 20 Hz low pass filter (see [55] for a
review on EMG data processing). Acceleration recordings were
downsampled from 120 Hz to 30 Hz and filtered by a binomial
filter over a window of 16 frames.

The resulting segments and primitives (see Fig. 11) show
that our approach works on EMG and acceleration data as suc-
cessfully as clean motion capture, despite the former two being
much noisier inputs. The EMG segments are very similar to the
acceleration segments representing the same motion; in most
actions, the same number of primitives were found across the
two modalities. We hypothesize that the slight differences in
timing are due to inherent differences in the signal captured by
the two modalities.

Clustering of the motion primitives is comparable between the
two modalities for most activities. The largest differences are in
‘wiping a window’ (grey blocks in trial 12). Here we were unable
to distinguish between back and forth wiping versus circular
wiping in the EMG, while the accelerations gave clear motion
primitive clusters. The EMG data does not reflect this difference
since the muscle activation on the main arm extensors and flexors
do not change as clearly as the accelerometer readings.

C. Kinect Action Data

Processing noisier markerless motion capture systems can
be a challenge, but our method can reliably handle such data
when the feature bundling step is included. We segment the

Fig. 12. Histograms show the average location of given key point annotations
(left-hand side) in the motion primitive and their standard deviations (right-hand
side). In the majority of cases, the location of key points is approximately at
the center of the corresponding primitive with a deviation of less than 20% if
feature bunding is used, as shown in (a) and (b). If the original features are
given as input the average locations are spread with larger standard deviations,
as shown in (c) and (d).

MSRC-12 Kinect Gesture Data Set from Fothergill et al. [56],
consisting of a number of action sequences which were origi-
nally recorded for action recognition. The data set consists of
594 sequences in total from 17 actors. The trials range from
1000-2000 frames recorded at 30 frames per second. The data
are available as 35 joint angles of 3 scalars over a length of n
frames. Examples of different segmentation results can be found
in Fig. 13.

Impact of feature bundling: We show the original input data
streams and our segmentation results with and without feature
bundling. The given key points [57] are annotations of the ges-
tures at a specified key frame and are indicated by red lines
in all subplots. Feature bundling allows us to segment a regu-
lar pattern of primitives that coincide with the time series [see
Fig. 13(a) and 13(b)]. Fig. 13(b) shows more variation in the
lengths of the primitives and originates from a break in the input
motion (first half of the trial, dark blue bar) and speed variations
(later half of the trial) which can clearly be seen in the plot of
the data stream. Fig. 13(c) is particularly interesting because the
primitive have a much finer structure. The motion primitives oc-
cur as ones recurrent groups of smaller parts (light green/green)
alternating with a longer primitive (blue) and are well aligned
with the key points.

Without feature bundling, the segmented motion primitives
are far less regular. In Fig. 13(a), three repetitions were broken
up into two individual parts (yellow and turquoise). In Fig. 13(b),
the longer breaks (brown) between the repetitions were found
but not all repetitions (dark blue) could be cleanly separated.
Finally, in Fig. 13(c), a similar pattern was found both with
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Fig. 13. Three different results produced on Kinect recordings. The input time series are plotted for an overview of the general structures of the underlying
motions, showing motions with (a) regular primitives segments [P1_2_g09_s08], (b) a sequence with a longer break and also some speed variation [P1_2_g05_s08],
and (c) many quick repetitions of primitives, i. e., waving both hands (see green bars) [P3_2_g11_s29]. The very fine primitive segmentation is desirable for motion
understanding, but may be punished by the consistency measure based on key point locations since the key point annotation now falls at the end or beginning of
the fine primitives.

Fig. 14. Results produced on Kinect recordings from the MSR 3D Action Dataset. (a) Segmentation results (green lines) and ground truth annotations (red
lines) for trial a08_s25_e11. The bars at the bottom indicate the ground truth labels: no action (black), drinking (blue), eating (green), and reading book (yellow).
(b) The corresponding SSSM with segmentation results as green lines. (c) Histograms for the distance between annotations and computed cuts on bundled and
(d) original features. (e) Histograms showing the overlap between annotated segments and primitives identified by our method on bundled and (f) original features.
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and without feature bundling, but without bundling, the shorter
primitives are split into smaller irregular parts that are assigned
to different clusters.

Consistency evaluation: To see how well our identified mo-
tion primitives correspond to the annotated key point, we mea-
sured the difference between the start frame of each motion
primitives and the key point and scale this value proportion-
ally to the length of the primitive. We plot the distribution
and standard deviation in Fig. 12. The histograms show that
with feature bundling, the key-point annotation as judged by
the human annotator occurs consistently at a relative position
of 40-60% in the segmented motion primitive [see Fig. 12(a)],
with a relatively low standard deviation of 15% around the
mean [see Fig. 12(b)]. Without feature bundling [see Fig. 12(c)
and (d)] the mean values are more spread with higher standard
deviations.

While our segmentations are highly consistent with the an-
notated key points, there are still a number of exceptions which
contribute to the distribution of deviations. One example is
shown in Fig. 13(c) where a sequence of smaller motion primi-
tives occurs arranged in the same order. According to our goal,
to identify repetitive motion primitives, the fine segmentation is
the desired result. However, this is non-ideal for the consistency
measure, since it considers the relative position within the mo-
tion primitive. With very fine primitives, the key points are at
the end of the last small cluster (green) or at the beginning of
the subsequent larger cluster (blue). Grouping together smaller
primitives and re-clustering could alleviate this problem.

D. Noncyclic Kinect Data
We also test on the more challenging MSR 3D Online Action

Dataset [58]. This data set contains noisy, mostly non-cyclic ac-
tions such as drinking, eating, using laptop, reading cellphone,
etc. recorded with a Kinect. We apply our method on the sub-
set S4, which contains 36 sequences of long trials (1000-3500
frames recorded at 30 fps) from 11 subjects and is intended for
continuous action recognition. The data are available as 20 3D
joint positions. An example segmentation result can be found
in Fig. 14(a) along with the corresponding SSSM b). Since the
annotations are given as intervals in this data set, we evalu-
ate according to the absolute distance in frames from the start
and end points of the annotation with respect to the next found
cut. This measure alone would favor over-segmentation; thus
we compensate with an additional measure of the overlap of
an annotation with the largest segment found by our method.
Using bundled features, we obtain a mean distance, between
the start and end points of the annotations and our primitives,
of 21.2 frames with a standard deviation of 19.6 frames. The
overlap is 66.56% (mean) and 21.16% (std). Without bundling,
we obtain 22.5 (mean) and 19.7 (std) frames and 67.2% (mean)
and 22.3% (std) overlap. Fig. 14(c)–14(f) shows the histograms
for these values. These sequences contain relatively static poses
and as such, the effect of feature bundling is not as strong as
in the more dynamic sequences where there are more variations
in pose. We were able to determine that many actions in this
data set can be split into three segments: a dynamic part in the

TABLE I
SCHEMATIC SELF SIMILARITY MATRICES FOR VARIOUS TYPES OF SYMMETRIES

beginning (e.g. raising cup to mouth), a static part in the middle
(drinking) and another dynamic part in the end (lowering cup).
This corresponds to the rough annotations in this dataset where
complex actions are annotated as a block, while our approach
returns finer motion segments.

E. Applications

Our segmentation method facilitates solutions to many com-
mon problems in motion analysis and motion synthesis. For
instance, the semantic annotations given for primitives or clus-
ters of primitives could be used to transfer annotation labels
to unlabeled data. Consider a database Su = [U1 , . . . ,Un ] of
n unlabelled motion primitives obtained by our proposed seg-
mentation method and a set Sl = [L1 , . . . ,Lj ] of j labelled
motion primitives. For all labelled primitives Li , i ∈ [1, . . . , j]
a knowledge base can be built by computing a feature-space
representation of Sl . A nearest neighbor search for all un-
known motion primitives in Su can be performed then creating
a similarity graph from this information. Based on this, opti-
mal warping paths between any of the Ls and Us can be found
by application of a subsequence DTW. If there is a valid cor-
respondence between the query and a labelled primitive, then
the label associated with the primitive with the lowest warping
path cost can be transferred. We achieve very high precision
with this approach (1.0 for motion classes jump, kick, punch,
run, squat, and stretch and 0.98 for walk) when using trials
86_01, 86_02, and 86_03 as knowledge base and transfer la-
bels to all motions of subject 86 of the CMU motion capture
database.
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Fig. 15. Scatter plots for timings of the steps of our method: (a) feature bundling, (b) knn search, (c) region growing (scan lines), (d) path searches, and (e)
clustering. Note that the complexity of the first three steps (a)–(c) is linear in the number of frames, whereas path searches (d) are quadratic in the lengths of the
activities. In practice, the clustering (e) also computes linear in the number of motion primitives.

Fig. 16. Documentation of EMG sensor placement on a human subject seen
from the front and back, respectively. Orange arrows point to direction of y-axis.

As another application, precomputed motion primitives can
also be used for motion synthesis with classical motion graph
techniques or as input for statistical models as used in [19], [59].

VIII. CONCLUSION

We have presented a segmentation method that can sepa-
rate cyclic activities and their transitions for a number of data
modalities. Our approach tackles the segmentation problem
on a general level in terms of the choice of crucial parame-
ters, e.g. the search radius and the feature offsets for stacking.
Our feature bundling is a novel contribution and proves to be
especially helpful for processing noisy data modalities such
as EMG, accelerometer and Kinect motion capture. We have
used a five-point derivation to estimate the direction of move-
ment in the bundling, but when faced with severe noise, one

will need more robust methods. This will further reduce vari-
ance in the feature space, with few implications, as long as
one does not try to synthesize new sequences from the feature
space.

So far, we have only shown our segmentation method on se-
quences taken in constrained settings. We anticipate that it is
also applicable to sequences taken “in the wild”, given the right
features and similarity measures. This remains an open topic
for future work. Challenges also remain to be seen once the
segmentation is even further generalized, for example to spa-
tial segmentation problems such as mesh animation sequences
[60], [61].

Since our method is based on self-similarities, the limits of
finding primitives are reached when input sequences contain
only non-repetitive activities (e.g. one step, jump, turn). How-
ever, the assumption that most human activities are of repetitive
nature is valid for motion capture data within existing datasets
such as CMU [54]. If the motion is cyclic, so are the measured
local accelerations. For EMG, however, we could not identify
substantial changes between the individual repetitions in the
muscle activation patterns. Here changes may occur from fatigue
effects in longer motion trials, though this was not observed in
our experimentation.

Currently, all tested data modalities have been processed in-
dividually; a natural next step is to jointly process several data
types in a multi-modal setting. Secondly, exploring smooth em-
bedding approaches [62] for feature bundling is a promising
direction for future work. Even though a PCA works for our
examples, small artifacts are nonetheless visible, which may
not be the case in other non-linear (but more computationally
expensive) embeddings.

We offer source code for our feature bundling, segmentation
and clustering approach online.1 We believe that it will be of
use for many different research applications and hope that it
will encourage others in the community to work on generalized
segmentation.

APPENDIX A
SYMMETRY TYPES

Schematic representations of self-similarity matrices for each
of the possible cases, discussed in Section V are given in Table I.

1[Online]. Available: http://cg.cs.uni-bonn.de/en/projects/gemmquad/
motionsegmentation/
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For symmetrical motions, there is no difference in the diagonal
structure in the SSSM from the original and mirrored features.
This leads to no additional cuts when symmetry is exploited for
the segmentation. Phase-shifted symmetry can occur with and
without speed variation. Without any speed variations, a more
diverse structure in the self-similarity matrices occurs in both the
original and mirrored features. For the original features, more
block-shaped parts may appear on each diagonal, while in the
mirrored setting, all diagonals aggregate to a more curvy pattern.
In the asynchronous case, the mirrored self-similarity matrix
shows no diagonal structures at all, adding to no additional
cuts. When symmetries are mixed, the SSSMs are characterized
locally according to the corresponding symmetry type.

APPENDIX B
DETAILS ON TIMINGS

Fig. 15 shows a timing breakdown for the CMU exam-
ples. The first segmentation step [part (c)] including feature
bundling [part (a)] and knn search [part (b)] activity detection
are, in practice, approximately linear in the number of frames
[Fig. 15(a)–15(c)]. In theory, the worst case complexity for re-
gion growing is O(kn), i.e. when the first region grows from
the first to the last frame of the input motion sequence. This
case was not observed in practice. The shortest path searches
for primitive detection [part (d)] is quadratic with respect to
the number of frames per activity. Finally, the clustering step
[part (e)] also computes in linear time (in the number of motion
primitives).

On an Intel Core i7 4930 K at 3.40 GHz we were able to
segment and cluster each motion sequence (up to 3000 frames
in length) in less than 15 seconds using our single threaded
Matlab implementation.

APPENDIX C
DATA SOURCE DOCUMENTATION

We recorded our EMG and acceleration data using a com-
bined wireless Delsys Trigno system. The sensor setup consisted
of 16 sensors placed on larger muscle groups of the trial subject
(see Fig. 16 for a list of locations and a visualization of the
hardware attachment). Both sensor attachment and recordings
were supervised by an accredited expert.

A selection of trials performed originally by subject 86 of
the CMU database was re-enacted by another human subject as
true to original as possible. This was done to compare the per-
formance of our segmentation method on other data modalities
while maintaining control of the activities represented by the
data streams. There are some minor deviations from the original
scripts due to different geometry of the location (e.g. in one of
our trials, originally 86 12, the subject had to walk some ad-
ditional steps after sweeping the floor and before reaching the
white board). The total length of the trials differs from the orig-
inal slightly due to similar reasons. Nevertheless, the sequences
contain the same activity classes as the original sequences, and
have mostly the same number of repetitions and are therefore
suitable for a qualitative comparison.
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[59] B. Krüger, J. Tautges, M. Müller, and A. Weber, “Multi-mode tensor
representation of motion data,” J. Virtual Reality Broadcast., vol. 5, no. 5,
pp. 1–13, Jul. 2008.

[60] M. Sattler, R. Sarlette, and R. Klein, “Simple and efficient compression
of animation sequences,” in Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Animation, 2005, no. 9, pp. 209–217.
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