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Abstract:
This work presents a novel and generic data-driven method for recognizing human full body ac-
tions from live motion data originating from various sources. The method queries an annotated
motion capture database for similar motion segments, capable to handle temporal deviations from
the original motion. The approach is online-capable, works in realtime, requires virtually no pre-
processing and is shown to work with a variety of feature sets extracted from input data including
positional data, sparse accelerometer signals, skeletons extracted from depth sensors and even
video data. Evaluation is done by comparing against a frame-based Support Vector Machine ap-
proach on a freely available motion capture database as well as a database containing Judo referee
signal motions and concludes by demonstrating the applicability of the method in a vision-based

scenario using video data.

1 INTRODUCTION

Consumer motion capture systems (like Kinect,
WiiMote, EyeToys, accelerometers) have received
a lot of attention in recent years, primarily be-
cause they enable the user to interact with an
application in a very natural way using low cost
hardware. The field of usage exceeds replacing
the classic game controller in computer games,
as new applications beyond the field of computer
games are emerging. This paper is motivated
by such a novel example application: The auto-
mated detection of Judo referee signals, i.e. the
recognition of full body movements as belonging
to a set of small motion segments which are de-
tected as certain referee signals (usually denoted
by their Japanese names). Taking the developed
method to the gym would allow for cost-effective
automatic score counting and time keeping and
greatly reduce the administrative overhead re-
quired at Judo competitions.

Technically, a fully data driven action recog-
nition scheme is devised, where motion sequences
can be detected in real time. The method is very
flexible concerning the used sensor input data,
which can range from high quality optical mo-

tion capture data, over medium quality Kinect
skeletons to highly noisy accelerometer readings.
Adding robust feature extraction from video data
to the recognition pipeline even enables the ap-
proach to detect actions from video input. All
this various input data can be compared in real-
time with previously recorded sample motions in
a motion database. The framework detects if the
performed motion is similar (and possibly time-
warped) to one of the annotated clips contained
in the database.

The method requires very little
preprocessing—only sample motions for each
action to be recognized have to be labeled by the
name of the action. No further explicit learning
phases are required. Additional flexibility comes
from the ability to add action templates to
the used action database in an online manner,
requiring only minimal processing.

For the purpose of evaluating different aspects
of the method it is applied to prerecorded high
quality motion capture data, to live captured
low quality motion data obtained by a Microsoft
Kinect sensor, to features extracted from video
data and to a sparse accelerometer sensor setup
with only four sensors attached to the actor’s



body. Interestingly, even for these very sparsely
distributed accelerometers, the method is able to
detect some actions, making it very effective in a
low-cost sensor setup.

2 RELATED WORK

Related work for the method can be divided
into four groups, image-based action recogni-
tion, 3D point trajectory action recognition meth-
ods, methods using accelerometers as sensors and
data-driven techniques in the field of computer
animation.

The first group of techniques uses 2D infor-
mation such as images coming from a video cam-
era to infer information about the actions taking
place. The work by (Bobick et al., 2001) presents
a view-based approach to action recognition us-
ing temporal templates, which are static vector-
images where the vector value at each point is
a function of the motion properties at the cor-
responding spatial location in an image sequence.
(Schuldt et al., 2004) use local space-time features
in combination with SVM classification schemes
for action recognition.

The second group works directly on 3D point
trajectory data. (Barbi¢ et al., 2004) show meth-
ods for automatically segmenting motion cap-
ture data into distinct behaviours. The work
by (Campbell and Bobick, 1995) presents tech-
niques for representing movements based on space
curves in subspaces called phase spaces, recogniz-
ing actions by calculating distances between these
curves at every time step.

(Arikan et al., 2003) use an interactively
guided Support Vector Machine to generalize ex-
ample annotations made by a user to the en-
tire motion capture database. Their approach
works well on the small (7 minutes) motion cap-
ture database presented in their paper. The
method presented in this paper uses a similar
SVM approach for comparison with the developed
method.

Data-driven k-nearest neighbor approaches
have been quite popular in the field of com-
puter animation in recent years. In the con-
text of synthesizing motions, (Chai and Hodgins,
2005) show how to transform the positions of a
small number of markers to full body poses. For
nearest neighborhood pose searches, they con-
struct a neighbor graph, allowing approximate
NN-searches and requiring a quadratic prepro-
cessing time in the size of the number of poses in

the database. (Kriiger et al., 2010) improve the
method presented in (Chai and Hodgins, 2005)
by querying a kd-tree for determining the neigh-
borhood of a query pose resulting in exact neigh-
borhoods for arbitrary query poses.

A novel and very intuitive puppet interface is
used by (Numaguchi et al., 2011) to retrieve mo-
tions from a motion capture database. By sketch-
ing actions with the 17-degree of freedom puppet,
the method matches the puppet’s sensor readings
retargeted to human motion to behaviour primi-
tives stored in the motion database.

(Raptis et al., 2011) develop a method to clas-
sify human dance gestures by using a special an-
gular skeleton representation designed for recog-
nition robustness under noisy input. They use
a cascaded correlation-based classifier for multi-
variate time-series data in combination with a
dynamic-time warping based distance metric to
evaluate the difference in motion between a per-
formed gesture and an oracle for the matching
gesture. Although the classification accuracy of
their approach is very good, it assumes that the
input motion adheres to the underlying musical
beat, whereas the approach presented here does
not rely on such assumptions.

Another class of methods is about using
accelerometers for activity recognition. (Bao
and Intille, 2004) present a system designed for
context-aware activity recognition detecting ev-
eryday physical activities from acceleration data.
They focus on a semi-naturalistic data collection
protocol to train a set of classifiers, and find this
is best evaluated by decision tree recognition al-
gorithms. Along the same lines, (Maurer et al.,
2006) study the effectiveness of activity classifiers
also within a multi-sensor system. Their analysis
of the proposed activity recognition and monitor-
ing system concludes it is able to identify and
record a subject’s activity in real-time.

While (Ravi et al., 2005) also study the activ-
ity recognition techniques, they present a solution
using only a single triaxial accelerometer worn
within different data collection setups. Within
this context, they analyze the quality of known
classifiers for recognizing activities with particu-
lar emphasis on the importance of selected fea-
tures and level of difficulty of recognizing spe-
cific activities. The system developed by (Khan
et al., 2010) is capable of recognizing a broad
set of human physical activities using only a sin-
gle triaxial accelerometer. The approach is of
higher accuracy than the previous works due to
a novel augmented-feature vector. Additionally,



they provide a data acquisition protocol using
data collected by the subjects at home without
the researcher’s supervision.

Since activity-aware systems have inspired
novel user interfaces and new applications, rec-
ognizing human activities in smart environments
becomes increasingly important. In this spirit,
(Choudhury et al., 2008) propose an automatic
activity recognition system using on-body sen-
sors. Several real-world deployments and user
studies show the relevance of using the results
to improve the hardware, software design, and
activity recognition algorithms to context-aware
ubiquitous computing applications.

This paper presents a method which is data-
driven and uses motions from a motion capture
database to construct a prior-database. Pub-
licly available datasets, like the Carnegie Mel-
lon University motion capture database (Carnegie
Mellon University Graphics Lab, 2004) and the
HDMO5 (Miiller et al., 2007) library, recorded at
the Hochschule der Medien in Stuttgart, contain
large amounts of motion capture data.

In this paper we used data from the HDMO05
library, which contains more than three hours of
systematically recorded and well documented mo-
tion capture data. Of great benefit in the eval-
uation of the action recognition method are the
manually cut out motion clips that were arranged
into 64 different classes and styles. Each such
motion class contains 10 to 50 different realiza-
tions of the same type of motion covering a broad
spectrum of semantically meaningful variations.
The resulting motion class database contains 457
motion clips of a total length corresponding to
roughly 50 minutes of motion data.

3 OVERVIEW

The workflow of the proposed action recogni-
tion method can be divided into three distinct
processes. First, in an offline step, the motion
capture database is created from motion data,
where the quality can range from sparse and noisy
data such as of a sensor setup using only a sin-
gle accelerometer to high accuracy optical mo-
tion capture data. All such data sets can eas-
ily be handled and are manually or automatically
annotated by specifying start and end frames as
well as a keyword for labeling. This is followed
by a preprocessing phase in which a kd-tree is
created using a specific feature set allowing fast
k-nearest neighborhood searches on the poses in
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Figure 1: Workflow of the proposed method. Starting
out with a motion capture database annotated with
actions of interest in an offline phase, the method
builds up a kd-tree from this data in the preprocess-
ing phase. The online phase then consists of feeding
new frames of the input motion into the annotation
module, recognizing actions as soon as the actor fin-
ishes executing them.

the database. This feature set depends on the
application which, in turn, is interdependent on
the specific type of motion capture system respec-
tively the employed sensor setup.

As of now, the workflow can be split into
the action graph-based (dark blue in Fig. 1) and
the SVM-based (green in Fig. 1) action recogni-
tion workflow. The SVM-based method is im-
plemented for comparison with the action graph
during evaluation. In the online phase of the ac-
tion graph method, actions are recognized from
any type input motion sequence by feeding new
frames of the input motion into the annotation
module. This module then uses similar poses re-
trieved from the kd-tree built up from the mo-
tion capture database in an action aware neigh-
borhood graph (see Subsection 4.3) to output all
recognized actions as soon as they are detected.
Within the SVM-based situation, the preprocess-
ing phase consists of learning SVM parameters
on a training set, whereas in the online phase,
the SVM classifier checks whether a frame de-
rived from the input query motion belongs to a
previously annotated action.

Since the approach at hand is generic, the in-
put need not be of a specific data type and may
even cover cross-modal signals.

4 ACTION RECOGNITION
METHODS

Evaluation is done by comparing two differ-
ent action recognition methods side-by-side, the



online-capable action graph, where the input mo-
tion sequence is efficiently compared to annotated
motions in the motion capture database and an
offline Support Vector Machine (SVM) approach
similar to one that was introduced for motion cap-

ture data by (Arikan et al., 2003).
4.1 Data Preparation

Since the preparation of motion capture data for
our method is highly dependent on the applica-
tion and sensors used, one cannot give general
rules for preparing the data in the database or for
processing the poses of the query motion. Various
applications presented in the results in Section 5
show realistic examples.

4.2 Data Annotations

For the training phase of the action recognition
methods, as well as for evaluations during the
testing phase, accurate annotations are needed.
Annotations inform the system at which time in
a motion sequence specific actions are performed
by the actor. For this reason, in this method, all
used datasets were annotated by hand. Another
possibility would be to use automatically anno-
tated mocap data, e.g. by methods presented in
(Arikan et al., 2003) or (Wyatt et al., 2005). In
this work, the decision was made on a complete,
reliable, manual annotation procedure to ensure
that the results are not affected by false, auto-
matically computed annotations. For each rel-
evant action, an annotator gives a start frame,
an end frame and a keyword that describes the
performed motion, ultimately creating a mapping
from database frame f to the annotations stored

in f.

4.3 Action Graph Based
Recognition

The presented action recognition method searches
for motion segments that are similar to annotated
actions in the motion database by taking into ac-
count the temporal continuity of the underlying
motion. This is in contrast to the SVM-based
approach presented in Subsection 4.4 for compar-
ison, which ignores this information and decides
whether a frame belongs to an action on a frame-
by-frame basis, leading to many possible ambigu-
ities.

To this end, the action graph detects if an ac-
tion ends at the current frame and then tries to

find possibly time-warped motion segments span-
ning the action in its entirety. Looking at the
individual pose neighborhoods of the knn-search
alone can lead to possibly many different anno-
tations. By using the action graph, paths rep-
resenting motion segment matches can be found
through the annotated neighborhoods, resolving
the ambiguity.

Basically, the method presented in this pa-
per extends the Lazy Neighborhood Graph (LNG)
proposed by (Kriiger et al., 2010) to find motion
segments similar to the currently performed mo-
tion, enabling its use for action recognition. In its
original implementation, the LNG first retrieves
the k nearest neighbors from a motion database
for every pose in the query motion. To bridge
the gap from these locally matching poses of the
retrieved pose neighborhoods to globally match-
ing similar motions in the database, their method
constructs a directed acyclic graph by regarding
the retrieved local neighboring poses from the mo-
tion database as vertices in the graph. Now, an
edge connects a pair of neighbors of temporally
adjacent pose neighborhoods, if certain stepsize
conditions are satisfied, similar to Dynamic Time
Warping. In its simplest form, the step tuple
(stepposes Steprime) = (1,1) connects pose p at
time ¢ to pose p + 1 at time ¢t + 1. By allow-
ing additional step tuples, the results could also
possibly be time warped. After having made all
possible connections, a single source vertex s is
connected to all the pose neighbors in the first
neighborhood. The problem of finding a motion
contained in the database which is most similar
to the query motion can now be reduced to solv-
ing a single-source shortest paths problem. Start-
ing the search at vertex s, one only has to check
whether there exists a path which terminates at a
vertex in the last neighborhood. The entire global
matching can be solved in O(kmlog(n)), where k
is the number of retrieved nearest neighbors, m
the number of frames contained in the query mo-
tion and n the number of frames in the motion
capture database.

In contrast to the original implementation of
the LNG, the developed action recognition frame-
work tries to find motion segments which start
close to the beginning of an annotated action
having the currently processed frame close to the
terminating frame of an annotation (see Fig. 2).
This is accomplished by first inspecting the pose
neighborhood of the current frame f, for anno-
tated ending poses. For each of these found ac-
tion ending poses, a search for a starting pose



annotated with the same action is performed in
all neighborhoods up to frame f,_;. All of these
starting poses are then connected with the single
source vertex mentioned above. If an annotated
action in the database is similar to the currently
performed motion and is contained in the pose
neighborhood queue of length w, the single-source
shortest paths algorithm is able to find paths from
the start of an action to the end of the action, con-
taining only the specified annotation. The found
actions are possibly time-warped according to the
allowed time-steps, making the method very flex-
ible and robust to time-variations in motion per-
formance.

In the technical part of the motion detection
scenario, we test by considering a query motion
take, e. g. from a Kinect recording, against a
set of query action classes A, that is, annotated
classes which are present in the data base. As
a result of searching the action graph for mo-
tions associated with these class annotations we
get a set of path candidates C = {s;} consisting
of similar motion segments s;. The size of this
set depends on the employed data base, but may
range from zero to several thousand retrieved seg-
ments. Consequently, we compute the percentage
of detected paths s; from the action graph which
agree with the query set A, thus automatically
addressing the fundamental question whether we
came across any action contained in A. We col-
lect the annotations which are represented most
strongly, i. e. make for more than 10% of the
whole set C' and computing the respective start
and end frames of these as follows. We calculate
the frame window which contains the intersection
of the annotation ground truth and a minimum
of 75% of all according paths retrieved from the
action graph. The start and end of this window
marks the start and end frame of the annotation
at hand. Note that in case we aim at evaluation
rather than detection, we follow a slightly differ-
ent protocol. This will be addressed in Section 5.

4.4 SVM-Based Action
Recognition

We additionally evaluate frame classification
based on a Support Vector Machine (SVM) with
a standard Radial Basis Function kernel (RBF).
To this end we use the LibSVM implementation
(Chang and Lin, 2011). Optimal SVM param-
eters C' balancing hyperplane minimization and
the influence of slack variables as well as the RBF
kernel width ~ are determined using grid search

with cross validation. To reduce the time con-
sumption for training, we use only 30% of the
frames of each training sequence that are chosen
randomly. To take possible influence of this ran-
dom selection into account, we conduct four runs
each time using a different training frame selec-
tion and average the resulting classification accu-
racies.

5 RESULTS

Applications used for evaluation

For evaluation purposes, we considered five appli-
cations. First, in Section 5.2.1, we performed ac-
tion recognition tests on a cut dataset taken from
the HDMO05 motion capture database. For this
reason we separated the cut sequence database
into a training part that contained exactly nine
realizations of each motion class, and a testing
part that contained at least 3 realizations. The
same motion capture database is then used to test
our algorithm on a sparse accelerometer setup,
detecting actions using a total of four simulated
accelerometers on the wrists and ankles.

In Section 5.2.2, we tested the behavior of
the methods with Judo referee signal movements
in an online scenario, using query motions com-
ing from an optical mocap system. In this sce-
nario, the database contained typical referee sig-
nals performed by three different actors with at
least three repetitions. This database was cap-
tured with a Vicon motion capture system and
the motion capture data was stored in the skele-
ton based .v file format.

We also modified the previous scenario to a
cross-modal scenario, where the query motion was
captured with a Microsoft Kinect sensor, obtain-
ing the skeletal data using the Microsoft Kinect
SDK. For this reason, the Judo database had
to be resampled to the native frequency of the
Kinect sensor (30Hz).

In the last application example (Section 5.2.3),
interest points extracted from video data serve as
input for the proposed algorithm, demonstrating
applicability in a vision-based context.

For each of the evaluated applications, we
build up two databases, one including motion
clips of the actor and the other with clips of the
actor excluded.

Some applications which require poses in the
database to be comparable need to perform a nor-
malization step on each pose, making them scale-



Frame f f £ f £ f

Query Motion

=¥
:

%
> <€
AL

}%

23

() ) )
p:posestep J \1 \

t:timestep \ 5
o o
R ()
N F«} 7 3
Ve 1%
0

@,

& 7

1
3
e /

/\\ -
-
\,_,,/‘7*\\.

s

)
Pose L/
Neighborhoods

Figure 2: Detecting actions in current frame f, using the action graph. In this example, we illustrate detecting
a ’Jumping Jack” motion which is performed in the last six frames (frn—5 to fn) using a window of w = 6 frames.
The poses of the "Jumping Jack’ are color coded, ranging from green to red, representing the start and end of
the action, respectively. First, all poses annotated with starting poses of actions (green) are connected to the
single source vertex required for the single-source shortest path algorithm, regarding all past neighborhoods up
to window size w. Now, for every neighborhood, poses are connected with edges according to the allowed time
and pose steps S (S = {(1,1),(2,2)} in this example). After running the single-source shortest path algorithm,
we check for every candidate path terminating at an action ending pose (red pose in neighborhood f,) whether
the nodes on the path are consistently annotated with the same action, in which case this action is reported
as found. Note that every 'JumpingJack’ motion contains a 'ClapAboveHead’ in its middle, as can be seen in
the pose neighborhoods (dashed circles). Consequently, this clap is also detected, but at an earlier stage (frame

Jn—2).
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Figure 3: Example action recognition run on frames 0 — 1686 of motion HDM_bd_03-05_02_120 from the HDMO05
motion capture library, comprising four jumping jack motions followed by three complete and one half skiing
motion starting with the left foot. Note that our method also detects sub-actions like the clap above the head,
which is contained in the middle of each jumping jack. The half-executed skiing motion at the end is not
detected, because the action graph is unable to find an annotated end frame in this case.
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and view-invariant. Along the lines of (Kriiger
et al., 2010), the root node of the skeleton is
transformed such that the skeleton faces forward
and is anchored at the global coordinate frame
origin. If the skeleton is given in a hierarchical
representation (e.g. HDMO5 and Judo database
skeletons), the root node’s position is translated
to (0,0,0)” and its orientation is set to the mul-
tiplicative identity quaternion, followed by a for-
ward kinematics calculation to update the re-
maining skeleton nodes. When normalizing skele-
tons where joint positions are given in absolute
world coordinates with no rotational information
(e.g. Kinect skeletons), the orientation of the root
node is estimated by exploiting rigid connectivity
between the pelvis and its neighboring joints, sim-
ilar to the normalization step used for raw optical
marker data in (Baumann et al., 2011).

To obtain scale-invariance, the bones of any
query skeleton are resized to match the skeleton
that was used to build up the database.

Description of the Evaluation

Allowing detection of more than one particular
action at a time does not make sense for eval-
uation of the detection method, especially when
this is done by means of confusion matrices. The
decision criteria presented in Section 4.3 which al-
low for several strongly represented action classes
to contribute to the detection results, is clearly
not suitable for evaluation purposes. Instead, we
decide for the single most strongly represented
action class found in the action graph paths. To
evaluate the quality of the decision method we
distinguish the following cases:

1. The retrieved motion paths lie completely
within the relevant ground truth interval, in
which case the method is regarded as properly
working.

2. The motion paths lie outside the ground truth
interval as a whole, in which case the method
is dismissed as incorrect (this was rarely ob-
served to be the case).

3. The retrieved path set intersects the ground
truth interval, in which case we further differ-
entiate: if this intersection includes more than
90% of the total retrieved paths, the method
is considered to work well, otherwise this hy-
pothesis is dismissed.

According to the above, matrices similar to
confusion matrices are used to visualize the per-
formance of the action recognition algorithm.

The columns of the matrix represent instances of
the recognized actions while the rows represent
the actual actions. Taking into account the cases
in which the algorithm fails to detect any action,
a column labeled none is added. A perfect action
recognition would have a confusion matrix with 1
on the diagonal and 0 for every other element.

5.1 Details on knn search

Choosing a feature set for the HDMO05 cut
database was straightforward. The results from
(Kriiger et al., 2010) indicated that feature set
FL°, which includes the positions of the head,
hands and feet, would work very well on this
database. The confusion matrices presented be-
low (Fig. 4) confirm that this assumption holds.
Instead of encoding temporal information (e.g.
velocities) in the feature set directly, these are
represented in the structure of the action graph:
Edges are inserted between successive database
indices, according to the allowed step size condi-
tions.

According to (Kriiger et al., 2010) we use the
step sizes (1,1), (2,1), (1,2) and (2,2). Thus, the
action graph easily runs in real-time when search-
ing for 256 nearest neighbors, achieving an aver-
age frame rate above 75Hz in a multi-threaded
implementation on the regarded motion capture
databases. The described results were obtained
using a system with an Intel hex core CPU with
3.33GHz and 24Gb of memory.

The knn search used in our approach can be
replaced by a fixed radius search. This varia-
tion does not produce convincing results, due to
the following reasons: First, a fixed radius can
mean that we do not find any neighbors. Sec-
ond, we found in our tests of this variant, that
the variability between motions in some classes
(cartwheel) is larger than variability in other
classes (walk two steps). Therefore it is not pos-
sible to specify a uniform radius for all regarded
motion classes.

5.2 Discussion of Results

5.2.1 Action Recognition Tests on
HDMO05 Motion Classes

We conducted action recognition tests on the
HDMO5 cut library, which contains manually cut
out motion clips that were arranged into several
different classes and styles, having multiple re-
alizations of the same motion. These motions
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Figure 6: Confusion matrices for SVM-based and action graph recognition methods, calculated on Judo Motions
using feature set Fg° for Kinect and V-Files and the corresponding precision-recall diagram.

action graph: actor included 128NN s

action graph: actor included 256NN
1
eft ]

eftfll
g g
clapAboveHead 0.8 clapAboveHead 0.8
clapHands clapHands
Gabionn ! o TebLown o
jumpingJack| . o jumpingJack! o
punchL | -4 punchL -4
punchR |l Jl punchR
walkCross: | 0.2 walkCross 0.2
walkLstart |l walkLstart;
walkRstart, walkRstart,
0 e —0
SR &
s ge of
AR OO &
SEE S, RO R
- Y (}fb(gw(%\\q\ O b{@ V\\?’S’o
PR N FRS

action graph: actor included 512N
eftll ]

gl
clapAboveHead:
clapHands -
grabHighR!
grabLowR
jumpingJack;
punchL}
punchR
walkCross
walkLstart
walkRstart

precision-recall diagramm

[

— 1024 NN

— 512NN
256 NN

— 128NN

0‘550 01 02 03 04 05 06 07 08 09 1

Figure 7: Confusion matrices for different values of the parameter k (128,256,512) using feature set Fi° on the
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Figure 8: Confusion matrix and precision-recall dia-

gram for Kinect queries in the Judo scenario where
larger step sizes were used.

were divided into a training set, containing 142
motions, and a test set, containing 273 motions.
The confusion matrices for the two action recog-
nition methods on this dataset using k£ = 1024 in
the k-nearest neighborhood search can be seen in
Fig. 4. Examining the confusion matrices shown
in Fig. 4, the SVM-based approach shows a good
performance for a pose-based approach, having a
clearly visible diagonal with a few outliers, pri-
marily confusing walking motions. The action
graph shows a crisp diagonal, with only two major
outliers, namely recognizing a sideways punch in-
stead of a cartwheel starting with the right hand
and recognizing a clap above the head instead of
a jumping jack. However, in both cases the cor-
rect actions are sub-actions of the recognized one,
which is illustrated in Fig. 2 and Fig. 3 for the
jumping jack motion. Also, when visually com-
paring the cartwheel instances with the sideways
punches, the starting phases of the cartwheels
show huge similarities with the sideways punches,
leading to false recognitions. This indicates the
method is broadly suitable. Inspecting the accu-
racy plot for the HDMO5 library in Fig. 7, the
recognition method detects 90% of actions cor-
rectly and its accuracy peaks at approximately
90% using k = 1024.

Testing of the method was also done by eval-
uating performance on a sparse accelerometer
setup consisting of only four accelerometers at-
tached to the wrists and ankles. Again, the
HDMO5 cut library was used for this experiment.
As can be seen in Fig. 5, the pose-based SVM ap-
proach mislabels many action classes, whereas the
action graph method shows a dark diagonal with
fewer mislabelings, indicating that the method
works well on this sensor setup. Taking a closer
look at the results also shows that the method
often confuses very similar actions, from which
many are not distinguishable from each other us-
ing accelerometers alone. One such example are
the clap above head and clap hands actions, which
produce the same sensor reading in the given sen-
sor setup.

5.2.2 Judo Referee Signals

In a cross-modal scenario, we used skeletons ex-
tracted from a Microsoft Kinect device to query
for similar motions in the optical motion capture
database containing the Judo referee signal mo-
tions. Skeletal data obtained from this sensor
contains positional data only and is of much lower
quality than the optical mocap data, meaning the
positional noise is much more noticable and the
accuracy of the system is not on par with opti-
cal systems. Since the Microsoft Kinect delivers
skeletal motion data at 30Hz, whereas the opti-
cal motion capture system has a frame rate of
119.88Hz, the Vicon data is downsampled to the
lower rate to obtain temporal comparability.

In order to improve the probability of find-
ing paths through the pose neighborhoods using
the action graph, we ran additional tests with an
increased number of allowed steps (see Fig. 8).
Interestingly, feature set Fi° gains in accuracy
when allowing 8 steps and 2'° neighbors.

5.2.3 Action Recognition from Video
Data

To show that the action recognition concept eas-
ily applies to other sorts of data, we refer to the
example of video data. In order to keep emphasis
on our action recognition method, we use a simple
setup to demonstrate the concept. To this end,
we annotate positions of hand, feet and the head
in the first frame of video data and use standard
feature detection methods (MSCR and SURF) to
track the relevant features used in our algorithm.
Based on these we obtain a ten dimensional fea-
ture set Fpl, consisting of five two dimensional
positions. Camera parameters are derived by in-
corporating knowledge about the scene and ac-
tors.

Since the motion database consists of three-
dimensional positional data in this example and
the feature extraction from video yields two-
dimensional interest points, we perform parallel
projections of all poses contained in the database.
To handle different viewing directions, projec-
tions were performed from different viewing an-
gles in 20 degree steps. All resulting two-
dimensional features were used to construct a
kd-tree for knn search. The back-projection of
kd-tree indices results in database indices in the
motion’s original space, enabling the use of the
action graph to detect the performed actions.
Since the tracked features are very noisy in our
case, the action graph does not return paths in



all relevant cases. To alleviate this we adapted
step size conditions for this scenario to allow for
steps (1,3),(3,1),(4,1) and (1,4) in addition to the
previously mentioned ones.

5.2.4 Comprehensive Analysis of the
Results

As demonstrated by the confusion matrices in
Fig. 4 and Fig. 5, the results of the above-
mentioned tests show that the proposed detection
method works very well on optical motion capture
data and still well for accelerometer data. How-
ever, the Judo results lag far behind this good
score both for motion capture data as well as data
from Kinect recordings (see Fig. 6). In both cases
this is partly due to the fact that the recorded ref-
eree motion repertoire turns out to be a challenge
for the method in itself: For one, most of the ges-
tures typical for Judo referees are fairly static and
do not display the continual movement a sensible
action recognition method is based on. Addition-
ally, referee gestures with different meanings of-
ten differ only marginally, especially for the noisy
Kinect data and its poorly aligned skeletons. This
causes conditions to deteriorate.

Fig. 7 illustrates the transition of the resulting
precision respectively recall for increasing choices
of the number k of nearest neighbors in the action
recognition test. As can be seen, the results for
k = 512 already display satisfactorily high preci-
sion. Achieving this is obviously easy if we require
as little recall. A more reliable framework forces
the recall to be higher by employing a parameter
k = 1024, although this effects in some loss of
precision.

6 CONCLUSION AND FUTURE
WORK

This paper examined methods to automatically
detect human full body motions using motion
capture data obtained from various setups. This
includes working with high quality optical mo-
tion capture data, skeletons associated to the
Microsoft Kinect within a cross-modal setup as
well as sparse and noisy data obtained from ac-
celerometers. Moreover, the method extends to
features extracted from video data. In particu-
lar, the presented data-driven motion based de-
tector was found to be superior to support vector
machines in terms of their performance.

The approach at hand is parameterized by the

employed feature sets, hence will work with other
capabilities. It will therefore be a matter of fu-
ture work to use and to evaluate the very recently
proposed more robust feature sets (Ofli et al.,
2012) within our framework. There are certain
areas which turn out to serve as fertile grounds
for future work: From one point of view, the ap-
plication of the fixed radius search method has
revealed there is a striking amount of variation
in the respective retrieved pose neighborhoods of
certain queries. In particular, the gaps occur-
ring within these neighborhoods seem notewor-
thy. Analyzing neighborhood variation phenom-
ena should provide interesting new insight.
Although our method is already real-time ca-
pable in many scenarios, it allows for modifica-
tions to increase this capability to scenarios with
many allowed time steps and large pose neigh-
borhoods: It is clearly not necessary to create a
complete graph structure for every single frame
throughout the process. Working out a more
efficient solution which avoids discarding previ-
ously acquired information in the spirit of (Taut-
ges et al., 2011) will contribute significantly to
greater efficiency.
Moreover, since all significant processes involved
in our method are easy to parallelize, they come
with even more advantages when executed on
highly parallel units. In particular, implement-
ing the proposed techniques on a GPU seems a
logical step which shall be taken in the future.
Another line of future research is the explo-
ration of other consumer electronic devices—such
as contact sensors, simple 1-or-2 axes accelerom-
eters, altimeters, etc.—and their combinations.
We refer to (Latré et al., 2011) for a recent sur-
vey of wireless body area networks and to (Khan
et al., 2010) for a recent accelerometer based
physical activity system. Although not all of
these are suitable for our approach, many of them
present promising perspectives. Especially cell
phones come with an increasing variety of sensors
and hence become popular objects of study. Com-
bining the information from different sensors at
different body locations combined with Bayesian
a priori knowledge on the temporal evolution of
human motions taken from databases—as our ap-
proach can be summarized—might be beneficial
in this more general context as well.
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