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Abstract. Motion capture data have been widely used in applications
ranging from video games and animations to simulations and virtual envi-
ronments. Moreover, all data-driven approaches for analysis and synthe-
sis of motions are depending on motion capture data. Although multiple
large motion capture data sets are freely available for research, there is
no system which can provide a centralized access to all of them in an
organized manner. In this paper we show that using a relational database
management system (RDBMS) to store data does not only provide such
a centralized access to the data, but also allows to include other sensor
modalities (e.g. accelerometer data) and various semantic annotations.
We present two applications for our system: A motion capture player
where motions sequences can be retrieved from large datasets using SQL
queries and the automatic construction of statistical models which can
further be used for complex motion analysis and motions synthesis tasks.

1 Introduction

Motion Capturing (mocap) has become a standard technique in the last decades.
Various data-driven applications like capturing with low cost sensors (e.g. Kinect),
action recognition and motion synthesis have been developed. All these data-
driven methods require high quality motion capture data.

For research purposes multiple datasets [1–4] containing tens of gigabytes
of mocap data are published and available for free download. These so called
databases are usually available as collections of files in different formats, like C3D,
BVH and ASF/AMC. Currently, the two largest, well established, and freely
available collections of mocap data are the CMU [1] and HDM05 [2] databases
where the data is organized in flat files. The file names do not include any
information about the nature of the event stored in the file. An indication of the
content of each file is given as rough textual description only.

For the CMU data collection, textual descriptions are given for each motion
file on the web page. In addition, links to motion files are sorted by subjects
and categories, such as Human Interaction, Locomotion, Physical Activities &
Sports. Each file name contains the subject number and an event number only.
For the HDM05 data collection, a technical report is available, where a script
with the description of the tasks the subjects had performed is published. Here,
the file-name refers to the subject, a chapter in this script and thus, gives an
indirect indication on the actual content. Additionally a frame rate is stored in
the HDM05 file names.



On the one hand there exists no centralized policy for frame accurate anno-
tations of motion capture data. Annotations on the frame level are only available
for few example motion sequences, as shown for comparison in the context of
motion segmentation [5, 6]. This makes it difficult to search the available data
for contents of interest. It is not directly possible to extract a sub part of a rele-
vant information e.g. extracting those frames where subject is in T-pose. To this
end, whole files have to be parsed and relevant contents have to be extracted
by hand. Another disadvantage of flat files is an inability to query, search, and
retrieve information in a structured manner. On the other hand a huge amount
of data-driven techniques were developed (see [7–10] for some examples) that
make use of carefully selected motion data. Our goal is to provide tools that
simplify and speed-up the work flow of data selection and model building for
such data-driven approaches.

The main contributions of this paper are:

– We present a flexible Entity-Relationship (ER) model that is capable to
handle motion capture data from various public available datasets.

– We come up with solutions to incorporate additional sensor data and data
that can be derived from the original measurements.

– We show that hierarchical annotations can be handled to describe the content
of the motion data.

– We show that default applications can be supported by relational databases.

The remainder of this work is organized as follows: We give an overview on
previous and related work in Section 2. The ER model of our database system
is explained in detail in Section 3, while we show some basic operations that are
available in Section 4. In Section 5 we consider details of the performance opti-
mization of the database scheme. Exemplary applications are shown in Section 6
and the work is concluded in Section 7.

2 Related Work

To handle the growing amount of mocap data, many alternative methods for fast
search and retrieval have been proposed by the research community. Based on
frame by frame comparison, Match Webs [11] were introduced to come up with
a efficient index structure. Due to the quadratic complexity it is not possible to
build index structures on all currently available mocap data with this method. To
avoid quadratic complexity of frame by frame comparisons, segmentation based
methods were developed [12]. Cluster based methods classify motion database
into small clusters or groups. The classification is either based on similar frames
in different motions [13] or on clustering similar poses [14]. Binary geometric
features [15] can be used to tackle this kind of segmentation problems. While
methods based on boolean features can not describe close numerical similar-
ity, this is the case when low dimensional representations of the motion data
are used for comparison. To compute low-dimensional representations of mocap
data principal component analysis (PCA) is a well established method [16, 17].



Another way to come up with low dimensional representations is to compute fea-
ture sets in a normalized pose space [18]. Dimensionality reduction is achieved
by using a subset of joint positions only. For the authors, a feature set consisting
of hand, feet and the head positions is the one of choice. They also show, that
it is possible to search these feature sets efficiently by employing a kd-tree as
index structure.

This retrieval technique is adopted for the database architecture proposed by
[19]. In this work the authors focus on both, data compression and retrieval of
motion capture data. A compression ratio of 25% of the original database size
is achieved with their method. To this end a curve simplification algorithm is
applied to reduce the number of frames to 20% of the original ones. An adap-
tive k-means clustering algorithm is used to group similar motion clips together.
In addition, a three-step motion retrieval method is used which accelerates the
retrieval process by filtering irrelevant motions. A database architecture con-
sisting of data representation, data retrieval and selection modules has been
proposed [20]. An in-memory internal representation of the motion data con-
sisting of a collection of poses is created via a data representation module. The
data retrieval and selection module queries this in-memory representation using
PhaseQuery and results are expressed as sequences of segments. The search and
retrieval time is almost real-time for small data sets but it increases dramatically
for larger data sets. The in-memory condition requires enough physical memory
to load large data sets.

For annotation purposes, semi-supervised techniques were employed. Based
on a support vector machine (SVM), a database of football motions was anno-
tated [17]. Such kind of annotations are transferred from motion capture data
to video sequences in [21]. To visualize and explore huge data sets hierarchi-
cal clustering on normalized pose features [22] was used to obtain an overview
on huge data collections. In opposite, Lin [23] presents a system where Kinect
queries are used to search and explore mocap datasets that are modeled as sets
of 3-attribute strings.

3 Database Architecture

The Entity-Relationship (ER) Model of the proposed database architecture is
shown in Figure 1. The core schema is divided into four different categories:

1. Controller Entity: The heart of the proposed schema, which controls the
flow of information.

2. Sensor-specific Entities: To handle sensor-specific data for each sensor.

3. Annotations Control Entities: Control annotation policy mechanism.

4. Derived Entities: To entertain non-mocap data which is computed from
the mocap data.

We will briefly explain each of these categories in the following subsections.



Fig. 1. Entity Relationship (ER) model of the proposed database architecture. The
core schema is divided into four different categories, each of which handles an aspect
of the proposed schema.

3.1 Controller Entity

The purpose of the controller entity is to control the flow of information in
a logical manner. It functions as the heart of the schema providing a logical
bounding among different entities. All vital information passes through the con-
troller entity. In our proposed database architecture, the motion entity acts as
the controller entity (Figure 1). The controller entity has a simple schema with
certain general attributes of a file such as 1) name: stores actual name of the
file, 2) file type: stores type of the file e.g. amc, c3d, 3) source: stores the source
of the file e.g. HDM05, CMU, and 4) synthesized: a boolean flag to indicate if
the motion data is an actual recording or an artificial motion obtained by some
motion synthesis procedure.



Table 1. Sensor-specific Entities, their attributes and description of each attribute.

Entities Attributes Description

amc file,
c3d file,
xsens file

frame count, frame rate Total frames and frame rate
sync frame Synchronization frame
path Physical path on HDD

amc data
tx, ty, tz Translation (x, y, z)
rx, ry, rz Rotation (x, y, z)
frame Frame number

c3d data
x, y, z 3D coordinates
residual Residual
frame Frame number

xsens data

sens ornt w, sens ornt x,
sens ornt y, sens ornt z

Sensor orientation (w, x, y, z)

sens acc x, sens acc y,
sens acc z

Sensor acceleration (x, y, z)

name map Name map
bone sens offset Bone sensor offset
frame Frame number

skeleton

dirx, diry, dirz Direction (x, y, z)
axisx, axisy, axisz Axis (x, y, z)
dofrx, dofry, dofrz Degree of freedom - rotation (x, y, z)
doftx, dofty, doftz Degree of freedom - translation (x, y, z)
bone length, limits Bone length, limits

skeleton misc

version, name, mass Sensor’s version, name, and mass
skel length Skeleton length
root order, root axis Order (rotation, translation) and Axis

(x,y,z) of the root
angle unit Unit of the angle

3.2 Sensor-specific Entities

Most of the entities in our proposed database schema are sensor-specific. Sensor-
specific entities, as the name indicates, are used to store sensor specific informa-
tion in the database. In order to achieve a flexible design of the database schema,
general properties of each recording are stored in separate entities (name of the
entity in a format: sensor name + an underscore + ‘file’ e.g. c3d file) and actual
data is stored in separate entities (name of the entity in a format: sensor name
+ an underscore + ‘data’ e.g. c3d data). Each sensor can have any additional
supporting entities. For example to store AMC data, the general properties are
stored into amc file table and the actual data is stored into amc data table. The
supporting entity in this case is joints table. We have processed and stored data
from different sensors in our proposed database, which include:

ASF Data: The ASF skeleton data is distributed into two entities namely
skeleton misc and skeleton. The skeleton misc entity stores the general attributes



of skeleton while the skeleton entity stores specific skeleton data of each joint in
each frame. The attributes of both entities are described in Table 1.

AMC Data: The AMC motion data is stored into two mandatory entities
amc file and amc data and a supporting entity joints. The amc file entity stores
general information about the data such as frame count, frame rate, synchro-
nization frame etc. A synchronization frame is used to overcome synchronization
problem amongst different sensor systems, which occurs when a single motion
is simultaneously recorded by multiple motion capture devices. The amc data
stores rotation and translation data for each joint in each frame. The joints
entity has a one-to-many relationship with the amc data and provides an easy
mechanism of joint-based data search using standard SQL statements. The at-
tributes of AMC data entities are described in Table 1.

C3D Data: The C3D data is stored into two mandatory entities c3d file and
c3d data and a supporting entity markers. Like the amc file, the c3d file entity
also stores general information about the data such as frame count, frame rate,
synchronization frame etc. The c3d data entity stores 3D information of each
marker in each frame. The markers entity has a one-to-many relationship with
the c3d data. The database can be queried based on markers to fetch data of a
particular marker using standard SQL statements. The attributes of C3D data
entities are explained in Table 1.

Accelerometer Data (Xsens): The accelerometer data is not available in
CMU or HDM05 mocap data sets. However, some recordings of accelerometer
data were captured later on and we have included these data sets in our database
schema. This shows the flexibility and extensibility of our database architecture
that any new sensor can be easily integrated within the existing schema. The
data has been recorded using Xsens’s MTi accelerometer [24]. In order to store
data; two mandatory entities xsens file and xsens data and a supporting entity
joints are used. The xsens file has same attributes as amc file and c3d file. The
xsens data entity stores orientation and acceleration data of each joint in each
frame. The joints entity has a one-to-many relationship with the xsens data.
The attributes of accelerometer data entities are explained in Table 1.

3.3 Annotations Control Entities

Annotations control entities are one of the important entities in the proposed
database architecture. These entities define an annotation policy mechanism and
provide an easy way to query the database based on an event keyword. In the
proposed database architecture, two entities have been introduced to handle an-
notations. The annotations entity stores the general attributes of an annotation
such as start frame, end frame, timestamp etc. the keywords entity serves as a
dictionary of annotations and has a one-to-many relationship with the anno-
tations entity. It also has a self-relation to maintain a hierarchical relationship



Table 2. Annotations Control Entities, their attributes and description of each at-
tribute.

Entities Attributes Description

annotations

annotator Name of the annotator
timestamp Record creation timestamp
startframe Starting frame number of the motion
endframe Ending frame number of the motion

keywords
keyword Keyword
parent id A self relation, null if no parents

Table 3. Derived entities - physics based features. Physics based features are derived
from mocap data sets and do not exit on their own.

Entity Attributes Description

physics
based
features

com x, com y, com z Center of Mass (x, y, z)
zmp x, zmp y, zmp z Zero Moment Point (x, y, z)
ang mom x, ang mom y, ang mom z Angular Momentum (x, y, z)
frame Frame number

between different keywords. The hierarchical relationships are parent- child rela-
tionships and define annotations from high-level general terms to low-level more
specific terms. For example, in HDM05, a ‘jumping jack’ motion is a child of the
‘workout’ event and a grand child of the ‘sports’ event. So the parent id of the
‘jumping jack’ will be the id of the ‘workout’ and the parent id of the ‘workout’
will be the id of the ‘sports’. The attributes of annotations control entities are
expressed in Table 2.

3.4 Derived Entities

In the proposed database architecture, there are certain entities which are de-
rived from the existing mocap data sets. These entities do not exist in any freely
available mocap data set. However, they are required in many research activities
and researchers have to manually compute them whenever required. A good ex-
ample of derived entities is physics based features such as center of mass, zero mo-
ment point, and angular momentum, which can be computed through kinematics
[25]. To entertain these features, a separate entity namely physics based features
has been created. The attributes of the physics based features are explained in
Table 3. This table has no real data at the moment and computing and dumping
physics based features into the database will be carried out in near future.

4 Basic Database Operations

4.1 Processing and Storing Mocap Data into Database

We have used PostgreSQL, version 9.0 - 64 bit, to store extracted data from
mocap data sets. PostgreSQL is a widely used object-relational database man-
agement system which is freely available under PostgreSQL license. A database



has been created using our proposed database schema. In order to extract data
from different formats and store into database, special scripts are written in Vi-
sual C++ and Matlab. These scripts read each file of a particular format, extract
data of interest, and generate text files with structured queries. These queries
are then executed under PostgreSQL environment to store data into different
tables. In order to optimize insertion process by minimizing data insertion time,
concepts of bulk data insertion are used.

4.2 Retrieving Collections

Collections can be retrieved using standard SQL statements. In the upcoming
subsections, we will give some examples of retrieving collections using standard
SQL queries.

Retrieving All Actors: This is a simple example of retrieving data of all
actors. Each event in mocap data is performed by one or more actors and motions
can be retrieved based on actor information.

s e l e c t ∗ from a c t o r s ;

Retrieving All Annotation Keywords: This is another simple example of re-
trieving all keywords. Each event in mocap data is annotated through a keyword, which
explains the nature of the event.

s e l e c t ∗ from keywords ;

Retrieving Annotations of a Specific Event Group: Sometimes one is in-
terested to find all annotations of a specific group of events e.g. finding all ‘sports’
annotations. In this example we show how one can retrieve annotations of a specific
event group. The event group of interest, in this case, is ‘sports’.

s e l e c t keyword from keywords
where pa r en t id = (

s e l e c t id from keywords
where keyword = ‘ ‘ sport s ’ ’ )

Retrieving Motion Information of an Event: This example shows how to
retrieve motion IDs of all motion records for ‘dancing’ event. These IDs can be used
in later steps to retrieve actual motion data.

s e l e c t m. id from motion m,
annotat ions a , a m c f i l e af ,
keywords k
where m. id=a . mot ion id

and a . keyword id=k . id
and a f . mot ion id=m. id
and k . keyword = ‘ ‘ dancing ’ ’



Retrieving Synchronized C3D Data: In this example, we show how to retrieve
synchronized data based on syn frame value. The synchronization frame, syn frame,
is used to overcome synchronization problem amongst different sensor systems, which
occurs when a single motion is simultaneously recorded by multiple motion capture
devices. The data-type of the syn frame attribute is real and stores synchronization
time in seconds. In the presence of this time, retrieving synchronized data is very easy
and straight forward as shown in the following query.

s e l e c t ∗ from c3d data
where c 3 d f i l e i d =1 and frame >

( s e l e c t sync frame ∗ f r ame rate
from c 3 d f i l e where id =1)

Retrieving AMC Data: In this query we extract all AMC data for ‘throwing’ event
where actor is ‘mm’ and source of mocap data is ‘HDM05’. This is a complex query as
it involves multiple joins among various entities such as actors, motion, amc file etc.

s e l e c t ∗ from amc data
where a m c f i l e i d in

( s e l e c t a f . id from a m c f i l e af ,
motion mo where
mo. source = ‘ ‘HDM05’ ’
and mo. id=a f . mot ion id
and mo. id

in ( s e l e c t m. id from motion m,
annotat ions a ,
ac tor s mot ion am
keywords k , a c t o r s ac

where m. id=a . mot ion id
and a . keyword id=k . id
and ac . id=am. a c t o r s i d
and am. mot ion id=m. id
and ac . name= ‘ ‘mm’ ’
and k . keyword = ‘ ‘ throwing ’ ’ ) )

5 Database Performance Evaluation

5.1 Performance Optimization

Before we evaluate the performance of the presented database scheme, we give some
insights of the steps taken for optimization of the database structure.

The size of the database on hard disk is approximately 61 GB after parsing and
inserting data from all ASF/AMC and C3D files for both HDM05 and CMU. Entities
amc data and c3d data are the largest entities having approximately 90 million and
130 million records respectively. Hence, an optimization policy is required in order
to minimize database search and retrieval time and maximize the system’s response
time. Indexing is one of the widely used optimization techniques in relational database
management systems. PostgreSQL provides several built-in indexing algorithms such as



Table 4. A comparison of performance optimization with and without indexing. The
data search and retrieve time has substantially decreased by introducing binary tree
based indexes.

Retrieving
Execution Time (ms)
Not Indexed Indexed

All Actors 51 11
All Keywords 13 10
Annotations of an Event Group 12 11
Motion Information of an Event 111 30
Synchronized C3D Data 244,770 18,029
AMC Data 217,795 8,132

B-tree, Hash, GiST and GIN [26]. PostgreSQL uses B-tree as default indexing algorithm
[26]. We have created indexes using B-trees on primary keys of both tables. We have
also created indexes using B-trees on foreign keys to minimize search and retrieval
time.

The trade-off of using indexes is slow data insertion as indexes are updated upon
each insertion. However, mocap data sets are not frequently updated so one can com-
promise on slow data insertion over fast find and fetch. Alternatively, indexes can be
dropped during insertion to speed up the insertion process and can be regenerated
afterward. We have executed all queries listed in the section Retrieving Collections 4.2
with and without indexing and the results are presented in Table 4. The comparison
clearly indicates substantial decrease in data search and retrieve time after introducing
B-tree based indexes.

Table 5. Database performance in terms of execution time.

Entity
(Size)

Total
Records

Fetched
Records

Trials
Count

Exec Time
(ms)

Fetch Criteria
(Event, Actor, Source)

amc data
(28 GB)

164x106

2,581 1 202 T-pose, bd, HDM05
237,771 2 8,134 Throwing, mm, HDM05
751,042 20 24,576 Walking, bd, HDM05

1,505,390 13 51,182 Dancing, All Actors, HDM05
126,701 12 4,293 Walk, 07, CMU
522,058 19 17,656 Modern Dance, 05, CMU
744,662 7 26,081 Swimming, 125, CMU

c3d data
(32 GB)

230x106

360,756 2 15,978 Throwing, mm, HDM05
1,139,512 20 48,121 Walking, bd, HDM05
2,196,786 13 98,768 Dancing, All actors, HDM05

179,129 12 8,395 Walk, 07, CMU
738,082 19 34,928 Modern Dance, 05, CMU

1,052,798 7 47,209 Swimming, 125 , CMU

The performance of a database can be analyzed based on how much time it takes
to search and retrieve records against simple and complex queries. As said earlier, we
have a particularly large database with a disk size of approximately 61 GB. The two



largest entities in our database are ’amc data’ and ’c3d data’ having a disk size of 28
GB and 32 GB respectively. In section 5.1, we have outlined our strategy to optimize
performance of the two entities by means of indexing. To test the performance of the
database, we have executed several queries on these two large entities. In general, we
have found minimum search and retrieval time when the retrieved collections are small
in count and maximum search and retrieval time when the retrieved collections are
large in count.
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Fig. 2. Scatter plot of the timings, when querying the AMC and C3D datasets. We
observed a linear relation between the number of retrieved records and the execution
time.

In order to test the performance of the database, several fetch criteria are used to
fetch data and the results are presented in Table 5. All tests are performed locally on
the database server machine. The database took only 202 ms to fetch 2581 records of
‘T-pose’ data of the actor ‘bd’ for HDM05. The database took 4293 ms to fetch 126701
records of the ‘Walk’ event of the actor ‘07’ (12 trials in total) from CMU. One the
other hand, it took 51182 ms to fetch 1505390 records of the ‘dancing’ event for all
actors (13 trials in total) from HDM05. During experimentation, we have observed that
the execution time increases as the size of the retrieved records increases and a linear
tendency is seen as shown in Figure 2. From this, we conclude that the performance
of the database is optimal for small record sets. Most applications work in cycles of
retrieving small chunks of data from the database and processing these records instead
of retrieving the whole data at once. With small execution time (such as 202 ms), it
is possible to achieve interactive processing by fetching and processing data frame by
frame.

Complexity Analysis of SQL Queries The complexity of an SQL statement
depends upon a number of factors such as number of tables involved, number of joins,
unions, intersections, where/having clauses, sub-queries and so on. The complexity
of an SQL statement directly effects its execution cost. The execution plan of any
SQL statement can be analyzed in PostgreSQL using the ‘explain’ command. “The
execution plan shows how the table(s) referenced by the statement will be scanned by
plain sequential scan, index scan, etc. and if multiple tables are referenced, what join
algorithms will be used to bring together the required rows from each input table” [27].

Retrieving Motion Information of an Event: The SQL query of retrieving motion
information of an event is given in number 4 of the section Retrieving Collections 4.2.



Fig. 3. Complexity analysis of the query ‘retrieving motion information of an event’
analyzed by PgAdmin Query Tool. This query involves inner-joins between four entities:
‘keywords’, ‘annotations’, ‘amc file’, and ‘motion’. It took 12 ms to fetch 13 records.

A visual complexity analysis of this query is presented in Figure 3. This query retrieves
motion IDs of all motion records for the ‘dancing ’ event. It consists of four inner-joins
between entities: ‘motion’, ‘annotations’, ‘amc file’, and ‘keywords’. In order to relate
entities, PostgreSQL uses indexes for those entities which are indexed and hash joins
are used for non-indexed entities. In this example only ‘motion’ entity is indexed so
its index (motion idx ) is used to retrieve records. This query took 12 ms to fetch 13
records.

Fig. 4. Complexity analysis of the query ‘retrieving AMC data’ analyzed by PgAd-
min Query Tool. This query consists of two sub-queries and seven inner-joins between
entities: ‘keywords’, ‘annotations’, ‘actors motion’, ‘actors’, ‘motion’, and ‘amc file’. It
took 8,066 ms to fetch 237,771 records.

Retrieving AMC Data: The SQL query of retrieving AMC data is outlined in number
6 of the section Retrieving Collections 4.2. This is one of the most complex queries in our



Fig. 5. Extended version of ASF/AMC motion capture player originally developed by
[28]. This extended version can be used to fetch data from the database and play it. In
the left side figure, the rectangle (right side bottom) highlights the extended part. The
user provides as input an ‘actor name’, an ‘event’, and an optional ‘motion number’.
The example shows three ‘throwing’ actions (left), two ‘rope skipping’ actions (center),
and three ‘skiing’ actions (right). All motions are performed by the actor ‘bd’.

schema. A visual complexity analysis of this query is presented in Figure 4. This query
retrieves AMC data records of all ‘throwing ’ events performed by the actor ‘mm’. This
query consists of two sub-queries and seven inner-joins between entities: ‘keywords’,
‘annotations’, ‘actors motion’, ‘actors’, ‘motion’, and ‘amc file’. Entities ‘motion’ and
‘amc data’ are indexed and their indexes (motion idx, motion data amc file idx ) are
used to retrieve records. The query took 8,066 ms to fetch 237,771 records. This
execution time is fairly acceptable considering the size of the entity ‘amc data’ (approx.
90 million records) and the complexity of this query which involves two sub-queries
and multiple inner-joins.

6 Applications

6.1 Extended Motion Capture Player

An ASF/AMC motion capture player is one of many ways to visualize motion frames
as animation sequence. For this purpose skeleton and motion data for each frame are
required. A basic ASF/AMC motion capture player is available with the CMU motion
capture dataset [28], which reads skeleton and motion data from flat files and plays
them as an animation. We present an extended version of this motion capture player
which is capable of motion import from our database. A new GUI element was added,
where the variable parts of the ‘retrieve AMC data’ SQL query (see Sec. 4.2) can be
filled. As input an ‘actor’, an ‘event’, and an optional ‘motion number’ can be given.
A database search is carried out for the specified input parameters and if the data is
found, it is loaded into the player. A user can then use various control buttons provided
in the player to play the animation. Multiple motions can be loaded and played at the
same time. With this type of interface it is simple to search for individual motion
sequences without having knowledge, or even touching the actual motion capture files.
Figure 5 shows three different types of motions loaded in the extended motion capture
player. In the left side figure, the rectangle (right side bottom) highlights the extended
part. The example shows three ‘throwing’ actions (left side figure), two ‘rope skipping’
actions (center figure), and three ‘skiing’ actions (right side figure). All motions are
performed by the actor ‘bd’ in these examples. This simple example already shows how
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Fig. 6. Scatter plot of the timings, when querying the amc dataset to construct motion
tensors. We observed a linear relation between the number of fetched motion segments,
but no dependency in the number of actors, motion classes or styles.

simple selections can be made on the basis of SQL queries. More sophisticated data
visualization techniques [22, 29] could use such selections to allow rapid drill down to
important parts of motion data sets for further exploration and analysis.

6.2 Automatic Generation of Statistical Models

Another set of techniques that can benefit from the connection to a relational mocap
database is the automatic construction of statistical models. Such models are used
for analysis tasks such as motion classification and segmentation or motion synthesis
tasks where motion sequences should be developed that fulfill certain user specified
constraints. To show the effectiveness of our approach, we show the automatic con-
struction of motion tensors, that have been shown to be useful for motion synthesis [7,
8]. To this end, we fetched data from the database for various actors in the same
number of repetitions for multiple motion classes that belong to various styles of a
motion. Krüger et al. [7] introduced so called natural modes, that belong to different
actors, repetitions or motion styles. In the original works these example motions were
selected by hand carefully. By using a data retrieval function, which is written in pro-
cedural language for the PostgreSQL (PL/pgSQL), we fetch the individual motions
for construction of the multi-modal model. The function takes as input actor name,
motion class, and number of repetitions and retrieves related data from the database.
Using this approach the construction of each tensor model, as described by Krüger et
al. [7], needed less than ten seconds. Larger sets of motions, including up to 5 actors
and 4 motion classes could be retrieved in about 12 seconds. The actual motions for
tensor construction where taken from the HDM05 motion capture database. For the
walk -tensor examples motions from the motion classes: walkRightCircle4StepsRstart,
walk4StepsRstart, walkLeftCircle4StepsRstart were used. For the grab-tensor the classes
grabHighR, grabMiddleR, grabLowR, grabFloorR were retrieved. And for the hop-tensor
the classes hopRLeg2hops, hopBothLegs2hops, hopLLeg2hops where used. The annota-
tions from the classes where taken from the so called cut-files subset which is described
in the documentation [2] of the HDM05 data set. Overall we observed that retrieval
times depend linear on the number of fetched motion segments instead of the number
of actors or motion classes (See Fig. 6). Thus, large data sets can be the basis for an
efficient construction of statistical models and therefore for a bunch of new applications
in motion analysis and synthesis.



7 Conclusion and Future Work

In this paper, we presented a relational database scheme for mocap data sets. Accord-
ing to this scheme, a database has been created using the open source PostgreSQL
RDBMS, and motion capture data from HDM05 and CMU datasets. The functional-
ity has been shown in two applications: A simple player where specific motions can
be loaded without touching the actual files and the construction of motion tensors
as example for statistical models, which can be used for further motion analysis and
synthesis steps.

The proposed database can easily be extended to derived entities of the motion
capture data sets. Thus, more complex annotations, physics based features or new
sensor modalities (Videos, Accelerometers, Gyroscopes, etc.) are easy to incorporate.
To combine further, more complex data-driven methods with the presented database
setup is planned for future research.
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