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Abstract: A number of previous works have shown that information about a subject is encoded in
sparse kinematic information, such as the one revealed by so-called point light walkers. With the
work at hand, we extend these results to classifications of soft biometrics from inertial sensor
recordings at a single body location from a single step. We recorded accelerations and angular
velocities of 26 subjects using integrated measurement units (IMUs) attached at four locations (chest,
lower back, right wrist and left ankle) when performing standardized gait tasks. The collected data
were segmented into individual walking steps. We trained random forest classifiers in order to
estimate soft biometrics (gender, age and height). We applied two different validation methods to
the process, 10-fold cross-validation and subject-wise cross-validation. For all three classification
tasks, we achieve high accuracy values for all four sensor locations. From these results, we can
conclude that the data of a single walking step (6D: accelerations and angular velocities) allow for a
robust estimation of the gender, height and age of a person.

Keywords: estimation of soft biometrics; gender, age and height estimation from inertial data; gait
analysis; inertial sensors to estimate gender, age and height; accelerometers

1. Introduction

Sparse representation of human motions has been investigated for some decades now. It is
well-known that representation of human motion by point light displays and similar concepts
(e.g., point light walker [1,2]) contains detailed information on several aspects of motions and
their initiators.

Over the years, the possibilities to identify certain parameters characterizing given motions have
been explored. On the one hand, it is possible to discover information about the displayed motions as
such. In the field of action recognition, it has been shown that estimation of poses and skeletons from
video and motion capture data allows for recognition and analysis of human movement (Lv et al. [3],
Junejo et al. [4], Barnachon et al. [5], Oshin et al. [6]). The survey of vision-based human motion capture
by Moeslund et al. [7] discusses the advances and application of motion-capture-related techniques
for tracking, pose estimation and recognition of movement. Recognition of motion patterns from
video data can be achieved by machine learning approaches exploiting local space-time features
(e.g., for SVM-based methods, Schüldt et al. [8]). On the other hand, information on the kinematic
properties of living beings or animated objects can be detected by analyzing representations of
motions. This can be done using motion capture data from passive or active devices, as well as
contact forces measurements (Venture et al. [9], Kirk et al. [10]).
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More recently, the market for wearable devices has virtually exploded (Liew et al. [11],
Son et al. [12]). The sheer number of devices [13] reflects that there are numerous methods to
capture and analyze human motion in a relatively new field of application associated with ubiquitous
computing. Even though information acquired by such devices may be less accurate than information
acquired by modern motion capture systems (Le Masurier et al. [14], Foster et al. [15]), it has been
shown that reconstruction of motion from extremely sparse sensor setups is possible in practice
(Tautges et al. [16], Riaz et al. [17]). This indicates that data collected using tri-axial accelerometers are
suitable for classification tasks, e.g., associated with social actions (Hung et al. [18]), general everyday
activities (Parkka et al. [19], Jean-Baptiste et al. [20], Dijkstra et al. [21]) or repetitive physical exercises
(Morris et al. [22]).

We investigated if data from a single wearable sensor can reveal similar information about
the moving subject as motion capture data in the sense of the above-quoted [1,2]. We focus on
classification of gender, age and height defining exemplary inertial properties of moving subjects.
Our experiments show that it is indeed possible to classify and thereby estimate such properties. Our
method is able to process representations of single steps recorded by one accelerometer (as opposed
to longer data sequences; Neugebauer et al. [23]). In sum, our method is able to recover soft biometric
information with high accuracy consistently over various sensor positions. Since the classification
task depends on the chosen feature sets, we further investigated this by evaluating the role of different
possible feature sets in the classification.

Modern machine learning techniques like decision trees can target pattern recognition and
prediction tasks based on many different representations of motion (Brand et al. [24], Bao et al. [25],
Kwapisz et al. [26]). We used random forests, a learning method based on the construction of multiple
decision trees, which can be used for classification, as well as regression tasks. While learning
predictive models by using decision trees on their own may result in over-fitting to a training set
(Phan et al. [27]), random forests are less prone to this problem. For an overview of random forests,
refer to the works of Breimann [28] or Liaw and Wiener [29].

2. Materials and Methods

2.1. Participants’ Consent

All participants were informed in detail about the purpose of the study, the nature of the
experiments, the types of data to be recorded and the data privacy policy. The subjects were aware
that they were taking part in experiments where a number of biometric and kinematic properties were
monitored. The main focus of the study was communicated to the subjects during their progress over
the course of the training by the specialists of Gokhale Method Institute [30] (Stanford, CA, United
States). Each willing participant was asked to fill in the data collection form with personal details,
including full name, sex, age and height.

2.2. Population Characteristics and Sampling

The participants were selected during a gait and posture training program conducted in July
of 2014 by the specialists of Gokhale Method Institute. They use special gait and posture training
methods to help regain the structural integrity of the body. The training program consisted of six
90-minute training sessions. The study population consisted of a total of 26 adults with a male
to female ratio of 12:14 and an average age of 48.1 years (σ = ± 12.7). The average height of the
participants was recorded at 174 cm (σ = ± 10.2). The characteristics of the study population are
shown in Table 1.
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Table 1. Characteristics of the study population, including age, sex and height. For validation, two
types of models were used: k-fold cross-validation and subject-wise cross-validation.

Variable Characteristics

Total Population 26

Age (y, mean, ± SD) 48.1 ± 12.7

Female Participants 14

Male Participants 12

Height (cm, ± SD) 174 ± 10.2

A k-fold cross-validation model (chosen value of k = 10) was used to compute the classification
accuracy of the classifier. In k-fold cross-validation, original sample data are randomly partitioned
into k equally-sized sub-samples or folds. Out of the k folds, k-1folds are used for training, and the
left-out fold is used for validation. The cross-validation process is repeated k times, and each of the
k folds is used exactly once for validation. For sampling, the stratified sampling method [31] is used
to divide the population into training and test datasets.

A subject-wise cross-validation model was also employed to compute the classification accuracy
of each participant against others. Subject-wise cross-validation is a special variant of leave-one-out
cross-validation in which instead of leaving one sample out for validation, all samples of one
participant are left out for validation. For n participants (n = 26, in our case), all samples of n − 1
participants are used for training, and all samples of the left-out participant are used for testing.
The cross-validation process is repeated n times in order to validate each participant exactly once
against the rest. Unlike 10-fold cross-validation, the number of samples in each fold is not equal in
subject-wise cross-validation. This is due to the difference in the step length of each subject. Subjects
with shorter step lengths have more steps than the others.

2.3. Standardized Gait Tasks

The gait task consisted of a 10-meter straight walk from a starting point, turning around and
walking back to the starting point. Participants were asked to walk in their natural manner and to
repeat the gait task two times, resulting in a 4× 10-meter walk. Three different types of experiments
were performed: (1) walking on a hard surface (concrete floor) with shoes on; (2) walking on a hard
surface (concrete floor) with bare feet; and (3) walking on a soft surface (exercise mattress) with bare
feet. Data were recorded during three different stages of the training course: (1) at the start of the
training (before the 1st session); (2) in the middle of the training (after the 3rd session); and (3) at the
end of the training (after the 6th session). Hence, for each participant, 9 different recording sessions
were carried out in total (see Table 2).

Table 2. Standardized gait tasks. Experiments were performed on different surfaces with and without
shoes, as shown here. For each participant, 9 different recording sessions were carried out in total.

4 × 10-Meter Straight Walk

Hard Surface Hard Surface Soft Surface

Shoes On Barefoot Barefoot

Recordings
Before 1st Session

After 3rd Session

After 6th Session
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2.4. Sensor Placement and Data Collection

A set of four APDM Opal wireless inertial measurement units [32] was used to record
accelerations and angular velocities. An APDM Opal IMU consists of a triad of three accelerometers
and three gyroscopes. The technical specifications of the sensor are given in Table 3. The sensors were
tightly attached to different body parts using adjustable elastic straps. We were particularly interested
in the inertial measurements of four different body parts: (1) chest; (2) lower back; (3) right wrist; and
(4) left ankle. The sensor placement at each body part is shown in Figure 1.

Table 3. Technical specifications of the APDM Opal IMU.

Accelerometer Gyroscope Magnetometer

Axes 3 axes 3 axes 3 axes

Range ±2 g or ±6 g ±2000 deg/s ±6 Gauss

Noise 0.0012 m/s2/
√

Hz 0.05 deg/s/
√

Hz 0.5 mGauss/
√

Hz

Sample Rate 1280 Hz 1280 Hz 1280 Hz

Output Rate 20 to 128 Hz 20 to 128 Hz 20 to 128 Hz

Bandwidth 50 Hz 50 Hz 50 Hz

Resolution 14 bits 14 bits 14 bits

y
x

z

y

x z

y

x

z

y

x

z

Figure 1. Placement of four APDM Opal IMUs on different body parts. The sensors were placed on
four different locations: left ankle, right wrist, lower back and chest.

2.5. Pre-Processing

The output sampling rate of an APDM Opal IMU sensor is adjustable between 20 and 128 Hz.
In our experiments, an output sampling rate of 128 Hz was chosen. Due to the noisy nature of the
acceleration measurements, raw data were pre-processed to suppress noise. To this end, we used the
moving average method with a window size of 9 frames to smooth the raw signal and suppress noise.

2.6. Signal Decomposition

The input signal consists of a long sequence of steps, which is segmented into single steps in
order to extract features. A simple approach to decompose a long sequence of steps into single steps
is by means of peak and valley detection [33–35]. In this approach, peaks are detected by finding
local maxima, whereas valleys are detected by finding local minima. The detection of false peaks is
minimized by using two thresholds: ∆d and ∆h·∆d is used to define the minimum distance between
two peaks, and ∆h is used to define the minimum height of the peak. We have used the same approach
to detect peaks and valleys from the input signal. The values of the two thresholds are chosen by
experimentation. The valleys are then used to cut the input signal into individual steps. Peaks and
valleys are only detected in the x-axis of the acceleration signal and are used to decompose the y- and
z-axes of acceleration and all axes of the gyroscope. This approach makes sure that the length of the
individual step is consistent in all axes of the acceleration and gyroscope. In Figure 2, the left side
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image presents the pre-processed input signal from the x-axis of the IMU’s accelerometer attached to
the lower back. The detected valleys, highlighted with circles (©), are also shown.
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Figure 2. The pre-processed input signal from the x-axis of the IMU’s accelerometer attached to the
lower back and an extracted single step are shown. In the left image, detected valleys are highlighted
with©. In the right image, a decomposed signal depicting a single step is shown between the vertical
dash-dot lines (- ·). Some of the extracted features from the single step are: (1) square (�): global
minimum; (2) diamond (�): global maximum; (3) solid line (–): mean; (4) horizontal dash-dot line (- ·):
standard deviation; (5) dashed line (- -): root mean square; (6) between vertical dash-dot lines (- ·):
length and duration.

2.7. Extraction of Features

All single steps detected from the signal decomposition are further processed to extract different
features from the time and frequency domains. Table 4 presents a complete list of features extracted
from different components of accelerations and angular velocities. For each single step, the feature
set consists of 50 features in total. Statistical features include: step length, step duration, average,
standard deviation, global minimum, global maximum, root mean square and entropy. Energy
features include the energy of the step. The maximum amplitude of the frequency spectrum of the
signal is calculated using fast Fourier transform (FFT). The step length and the step duration are only
computed for the x-axis of the accelerations, as they remain the same in all other axes. All of the
remaining features are computed for all 3D accelerations and 3D angular velocities. In Figure 2, the
right-hand image presents a decomposed signal depicting a single step between the vertical dash-dot
lines (- ·). Some of the extracted features are also shown, including: (1) square (�): global minimum;
(2) diamond (�): global maximum; (3) solid line (–): mean; (4) horizontal dash-dot line (- ·): standard
deviation; (5) dashed line (- -): root mean square; (6) between vertical dash-dot lines (- ·): length and
duration of the step.

Table 4. Description of the extracted features for each step from the accelerometer (A) and/or the
gyroscope (G). For each step, 50 features from the time and frequency domains are computed.

Feature Name Sensor Axis Total Description
Step Length A x 1 Total number of frames

Step Duration (s) A x 1 Step duration in seconds
Average A, G x, y, z 6 Mean value of the step

Standard Deviation A, G x, y, z 6 σ of the step
Minimum A, G x, y, z 6 Global minimum of the step
Maximum A, G x, y, z 6 Global maximum of the step

Root Mean Square A, G x, y, z 6 RMS value of the step

Entropy A, G x, y, z 6 Uncertainty measure of the step, si .: −∑n
i=1 (pi)log2(pi) where pi =

si
max(si )

∑n
i=1

si
max(si )

Signal Energy A, G x, y, z 6 Energy of the step: ∑N
n=1 |x[n]|2

Amplitude A, G x, y, z 6 Maximum amplitude of the frequency spectrum of the signal of the step
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2.8. Classification of Features

Training and validation data were prepared for each sensor using the features extracted in the
previous step. Three types of group classification tasks were performed: (1) gender classification;
(2) height classification; and (3) age classification. Furthermore, training and validation data were
also prepared for classification within participant subgroups for height and age classification. In
Table 5, the characteristics of the population within different classification tasks are presented. For
age and height classification, we choose classes based on the available data. Here, we have tried to
define meaningful thresholds for classes while keeping balanced populations for all classes.

Table 5. Characteristics of the population within different group and subgroup classification tasks.

Task Classes N Age (Mean ± SD)

Group Classification Tasks

Gender Classification
Male 12 43.75 ± 14.50

Female 14 51.79 ± 11.15

Age Classification
Age < 40 9 34.11 ± 03.62

40 < Age < 50 6 46.67 ± 02.58

Age ≥50 11 60.67 ± 07.48

Height Classification
Height ≤ 170 cm 8 55.62 ± 11.29

170 cm < Height < 180 cm 10 44.70 ± 11.31

Height ≥180 cm 8 44.75 ± 13.81

Subgroup Classification Tasks

Age Classification

Male Group
Age ≤40 6 32.67 ± 02.94

Age >40 6 54.83 ± 09.87

Female Group
Age ≤50 6 41.83 ± 06.08

Age >50 8 59.25 ± 07.48

Height Classification

Male Group
Height ≤180 cm 7 38.43 ± 11.27

Height >180 cm 5 51.20 ± 13.85

Female Group
Height ≤ 170 cm 8 55.62 ± 11.29

Height >170 cm 6 46.67 ± 09.48

As the classifier, random forest [29] was chosen and trained on the training dataset with the
following values of parameters: number of trees = 400; maximum number of features for best split = 7.
Two types of validation strategies were employed: stratified 10-fold cross-validation and subject-wise
cross-validation. The 10-fold cross-validation was employed for all group and subgroup classification
tasks, whereas the subject-wise cross-validation was employed to group classification tasks only.

For each sensor in a classification task, the classifier was trained and validated for three different
sets of features: (1) 3D accelerations (26 features); (2) 3D angular velocities (26 features); and (3) 6D
accelerations and angular velocities (50 features). The 10-fold cross-validation was employed for
all three sets of features, whereas the subject-wise cross-validation was employed for the third set
of features (50 features) only. Finally, the classification rate, specificity, sensitivity and the positive
predictive value (PPV) for each set of features were calculated as explained in [36]. The same approach
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was used for all group and subgroup classification tasks. The classification rate c or classification
accuracy is given by the formula in Equation (1):

c =
(TP + TN)

(TP + TN + FP + FN)
(1)

where TP, TN are the numbers of true positives and true negatives, respectively, and FP, FN are the
numbers of false positives and false negatives, respectively.

3. Results

In the following sections, we present the results of our investigations of the recorded gait
data. Our classification results prove a number of hypotheses regarding biometric and biographic
characteristics of the human subjects. Specifically, the gender, the body height and the age of
participants could be classified well. Each of classification tasks was solved by training random forest
classifiers, as introduced in the previous section.

3.1. Gender Classification

Our goal was to show that classification tasks regarding the gender of the trial subject can be
performed sufficiently well by using the proposed sensors attached to each of the given locations.

H0: The gender can be identified by motion recordings of any of the employed sensors
The results presented in Figure 3 show that the statement holds true for each of the four sensors

individually. For each sensor, there are three different images visualizing the results of the binary
classification, namely for the investigation of accelerations, of angular velocities, as well as of both
combined. The confusion matrices encode the following information: each column represents the
instances in one of the predicted classes, while each row represents the instances in the actual class
(female/male).
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Figure 3. Confusion matrices of gender classification computed with 10-fold cross-validation.
Each column presents sensor position (left to right): left ankle, lower back, chest and right wrist.
Each row presents feature sets used for classification (top to bottom): 3D accelerations (26 features),
3D angular velocities (26 features) and 6D accelerations and angular velocities (50 features).
Classes: CF

G = gender female; CM
G = gender male.

For the application of acceleration only, the classification rates are higher than 84.8% for each
of the sensors. Classification results based on angular velocities show a lower classification rate, but
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still above 79.35%. The classification based on the combined features performs better than each of
the individual feature sets, namely above 87%. More precisely, the results for the combined features
are (listed by sensor in descending order of rates): chest (92.57%), lower back (91.52%), left ankle
(89.96%), right wrist (87.16%). Table 6 presents 10-fold cross-validation results of gender classification,
including correct classification accuracy, sensitivity, specificity, the positive predictive value (PPV) of
each class and the average PPV of all classes. PPVC1 represents the PPV of the class CF

G, and PPVC2

represents the PPV of the class CM
G .

Table 6. Classification results obtained by using 10-fold cross-validation for different classification
categories: gender, height and age. The results show balanced correct classification rates, sensitivity,
specificity, the positive predictive value (PPV) of each class and the average PPV of all classes.

Classification Task Body Part Sensor Class.Rate Sens. Spec. PPVC1 PPVC2 PPVC3 Avg.PPV

Gender Classification

Chest Axyz , Gxyz 92.57 91.72 93.24 91.43 93.48 – 92.45
Lower Back Axyz , Gxyz 91.52 89.42 93.18 91.22 91.75 – 91.49
Right Wrist Axyz , Gxyz 87.16 85.75 88.32 85.85 88.24 – 87.05
Left Ankle Axyz , Gxyz 89.96 86.77 92.57 90.52 89.54 – 90.03

Body Height Classification

Chest Axyz , Gxyz 89.05 88.84 94.45 89.65 87.43 90.00 89.03
Lower Back Axyz , Gxyz 88.45 88.16 94.05 91.36 88.73 86.39 88.82
Right Wrist Axyz , Gxyz 84.78 84.65 92.33 83.40 85.21 85.43 84.68
Left Ankle Axyz , Gxyz 87.28 87.07 93.47 89.87 89.06 84.23 87.72

Age Classification

Chest Axyz , Gxyz 88.82 87.40 94.05 90.10 93.02 85.81 89.64
Lower Back Axyz , Gxyz 88.82 87.20 94.12 87.34 89.48 90.03 88.95
Right Wrist Axyz , Gxyz 83.50 81.08 91.18 82.23 88.74 82.72 84.56
Left Ankle Axyz , Gxyz 85.74 83.80 92.33 86.09 92.52 82.82 87.14

3.2. Body Height Classification

Another goal was body height classification from only accelerations, angular velocities and a
combination of both.

H1: The body height can be identified by motion recordings of any of the employed sensors
The results of the ternary classification for each individual sensor are given in Figure 4. Here, the

classification estimated the assignment to three classes (C1
H : height ≤170 cm, C2

H : 170 cm < height <
180 cm, C3

H : height≥180 cm). A behavior similar to the gender classification was observed where the
classification based on the combined features of accelerations and angular velocities performs better
than the individual ones. More precisely, the results for the combined features are (listed by sensor
in descending order of rates): chest (89.05%), lower back (88.45%), left ankle (87.27%), right wrist
(84.78%). Table 6 presents 10-fold cross-validation results of body height classification, including
correct classification accuracy, sensitivity, specificity, the positive predictive value (PPV) of each class
and the average PPV of all classes. PPVC1 shows the PPV of the class C1

H ; PPVC2 shows the PPV of
the class C2

H ; and PPVC3 shows the PPV of the class C3
H .
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Figure 4. Confusion matrices of body height classification computed with 10-fold cross-validation.
Each column presents the sensor position (left to right): left ankle, lower back, chest and right wrist.
6D accelerations and angular velocities (50 features) were used for classification. C1

H : height≤170 cm,
C2

H : 170 cm < height < 180 cm, C3
H : height ≥ 180 cm.
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3.3. Age Classification

Another goal was age group classification from only accelerations, angular velocities and
their combination.

H2: The age group of individuals can be identified by motion recordings of any of the
employed sensors.

The results of the ternary classification for each individual sensor are given in Figure 5. Here, the
classification estimated the assignment to three classes according to three age groups (C1

A: age <40;
C2

A: 40 ≤ age < 50; C3
A: age ≥ 50) of participants. Similar to the previous classification tasks, the

classification based on the combined features of accelerations and angular velocities performs better
than the individual ones. More precisely, age classification results for the combined features are (listed
by sensor in descending order of rates): lower back (88.822%), chest (88.818%), left ankle (85.74%),
right wrist (83.50%). Table 6 presents 10-fold cross-validation results of age classification, including
correct classification accuracy, sensitivity, specificity, the positive predictive value (PPV) of each class
and the average PPV of all classes. PPVC1 represents the PPV of the class C1

A; PPVC2 represents the
PPV of the class C2

A; and PPVC3 represents the PPV of the class C3
A.
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Figure 5. Confusion matrices of age classification computed with 10-fold cross-validation.
Each column presents the sensor position (left to right): left ankle, lower back, chest and right
wrist. 6D accelerations and angular velocities (50 features) were used for classification. C1

A: age <40;
C2

A: 40 ≤ age < 50; C3
A: age ≥ 50.

3.4. Contribution of Individual Features to Classification Results

The contribution of each of the employed features in all three classification tasks was
homogenous in the sense that there is not one outstanding feature with a major contribution to the
classification results. In all experiments, we made the following observation: in sum, accelerations
contributed more to the overall results than angular velocities. However, the combination of the
two feature types did better than accelerations or angular velocities individually. Random forest’s
permutation-based variable importance measures have been used to evaluate the contribution of
individual features in the overall classification results. For further details, refer to the works of
Breimann [29] and Louppe et al. [37].

In detail, the classification results related to sensors at different locations can depend on quite
different feature sets. In the following, we will give an overview of the most important contributors
for each of the locations.

3.4.1. Gender Classification

For the location at the chest, angular velocities (around the y-axis, i.e., transverse axis)
contributed most, especially the standard deviation, max, energy, and RMS. These are related to the
rotation of the upper body around a horizontal axis over the course of the motion. Note that this is not
a contradiction to our other claims. Furthermore, the amplitude of the accelerations along the x-axis,
i.e., the cranio-caudal axis, is of high importance. For the lower back, the most important features
are associated with acceleration of the z-axis. This corresponds to changes in the velocity of the hip
movement within the sagittal plane, i.e., front to back. In addition, angular velocities associated with
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the z-axis, i.e., rotation around the anteroposterior axis (swinging of hips), contribute significantly to
the results. Furthermore, the amplitude of the accelerations along the x-axis, i.e., the cranio-caudal
axis, is also of high importance. For the right wrist, features associated with acceleration along the
y- and z-axes are top contributors. Particularly, minimum, maximum and entropy acceleration values
associated with dorso-ventral, as well as lateral movement of the hand play a more important part in
the classification. Furthermore, the RMS and energy of angular velocities associated with the z-axis
are important. This is also linked to the swinging of the hand in the lateral direction.

For the ankles, the contribution of accelerations along each axis is generally higher compared
to the contribution of other single features. Figure 6 shows bar graphs of the features’ importance
computed during gender classification. The graphs present a comparison of the importance of
each feature (as percentage) with respect to different sensor positions. In general, all features are
significantly contributing in the classification task. An overview of contribution percentages where
the most important features are highlighted is given in Table 7.

Table 7. Features importance computed during gender classification using 10-fold cross-validation
strategy. The top 5 contributing features are highlighted with bold text. All values are the percentage.

Len Dur Mean SD Min Max RMS Ent E Amp

Chest

Ax 1.42 1.39 1.62 2.72 2.05 2.14 2.51 1.87 1.44 4.38

Ay – – 1.14 1.35 1.32 1.09 1.03 1.08 1.03 2.17

Az – – 2.80 1.55 2.31 2.18 3.48 3.01 3.85 1.15

Gx – – 1.58 1.28 2.42 2.20 1.20 2.45 1.22 2.04

Gy – – 1.04 4.67 1.42 5.02 3.70 0.88 4.75 1.83

Gz – – 0.84 1.49 1.00 1.17 1.56 1.14 1.53 1.50

Lower Back

Ax 1.61 1.62 1.45 2.41 1.34 2.08 1.80 1.94 1.36 4.14

Ay – – 1.99 1.80 1.53 1.43 1.69 1.70 1.92 2.48

Az – – 5.11 2.25 4.30 4.93 2.19 2.12 2.15 2.05

Gx – – 1.47 3.51 1.75 1.42 1.54 1.29 1.71 2.39

Gy – – 1.02 1.60 1.33 1.39 1.44 1.16 1.38 1.75

Gz – – 1.40 1.42 1.38 2.20 1.42 1.46 1.59 3.60

Right Wrist

Ax 1.20 1.21 1.49 2.33 1.88 1.41 1.62 1.52 1.40 2.14

Ay – – 2.43 1.83 2.69 2.01 2.49 2.89 2.53 2.04

Az – – 2.02 2.24 2.25 2.84 2.49 1.62 2.30 1.70

Gx – – 1.52 2.04 1.82 1.47 2.36 1.31 2.52 2.00

Gy – – 2.35 1.46 1.57 1.53 2.61 1.83 2.61 1.57

Gz – – 1.78 1.88 1.94 2.38 3.00 1.49 2.89 1.50

Left Ankle

Ax 1.15 1.17 1.52 2.62 3.97 1.65 2.12 1.66 1.86 1.71

Ay – – 3.61 1.68 1.55 4.21 1.83 2.15 1.59 1.22

Az – – 5.17 1.62 3.43 2.15 1.58 1.86 1.65 1.89

Gx – – 1.60 1.46 1.92 2.29 1.55 1.64 1.30 1.65

Gy – – 2.01 1.86 2.39 1.90 1.86 1.72 1.94 2.19

Gz – – 1.64 1.80 1.99 1.90 1.65 1.77 1.75 1.67
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Figure 6. Bar graphs of the features’ importance computed during gender classification using the
10-fold cross-validation strategy. The graphs present a comparison of the importance of each feature
(in %) with respect to different sensor positions. In general, all features are significantly contributing
in the classification task.

3.4.2. Body Height Classification

For the location at the chest, accelerations along the z-axis contributed most, especially the
mean, minimum, maximum and energy. These are associated with the motion of the upper body
in the dorso-ventral direction. Furthermore, the minimum accelerations along the x-axis, i.e., the
cranio-caudal axis, are of importance.

For the lower back, the most important features are associated with acceleration of the z-axis,
especially the mean, maximum, RMS and energy. This corresponds to changes in the velocity of the
movement of the hips within the sagittal plane, i.e., front to back. In addition, the minimum of the
accelerations in the x-axis contributes significantly to the results. These are linked to the movement
of the hips along the cranio-caudal axis (up and down). For the right wrist, features associated
with acceleration along each of the three axes contribute significantly. Particularly, maximum, RMS
and energy values associated with dorso-ventral movement of the hand play a more important part.
For the ankles, also the contribution of accelerations along each axis is generally high. Additionally,
angular velocities associated with the rotation of the feet from side to side (around the z-axis) are
significant contributors. Figure 7 shows bar graphs of the feature contribution computed during
body height classification. The graphs present a comparison of the importance of each feature
(as percentage) with respect to different sensor positions. In general, all features are significantly
contributing in the classification task. An overview of the contribution percentages where the most
important features are highlighted is given in Table 8.
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Table 8. Features’ importance computed during body height classification using the 10-fold
cross-validation strategy. The top 5 contributing features are highlighted with bold text. All values
are the percentage.

Len Dur Mean SD Min Max RMS Ent E Amp

Chest

Ax 1.27 1.24 1.81 3.19 4.15 1.87 2.38 1.57 1.63 2.38

Ay – – 2.28 1.61 1.86 2.10 1.87 1.48 1.62 2.09

Az – – 3.69 3.44 3.62 3.67 3.34 2.38 3.60 1.60

Gx – – 1.70 1.52 1.65 1.81 1.72 1.74 1.77 1.96

Gy – – 1.00 2.05 1.61 2.15 2.06 0.94 1.89 1.22

Gz – – 1.25 1.77 1.19 1.54 1.74 1.13 1.75 1.11

Lower Back

Ax 1.34 1.33 1.57 3.12 2.65 1.82 1.89 1.78 1.59 2.43

Ay – – 2.83 1.51 1.77 2.31 1.82 1.51 1.73 1.54

Az – – 4.35 2.54 2.73 3.01 3.40 2.26 3.88 1.44

Gx – – 2.16 2.08 1.52 1.63 1.52 1.40 1.50 1.42

Gy – – 1.28 1.55 1.76 1.49 1.62 1.96 1.57 1.53

Gz – – 1.69 1.89 1.71 2.08 1.83 1.65 1.99 3.02

Right Wrist

Ax 1.33 1.33 1.89 2.83 2.78 1.49 2.26 1.62 1.82 2.35

Ay – – 2.48 2.31 3.03 2.68 2.14 1.86 1.99 2.07

Az – – 2.53 2.31 2.56 3.48 2.87 1.62 2.86 1.50

Gx – – 1.71 1.49 1.60 1.43 1.81 1.26 1.64 1.32

Gy – – 1.82 1.82 1.76 2.30 1.98 1.59 2.04 1.61

Gz – – 1.95 1.57 1.87 1.97 2.14 1.48 2.19 1.65

Left Ankle

Ax 1.04 1.06 1.31 2.53 3.81 1.86 1.89 1.26 1.50 1.82

Ay – – 3.41 1.62 1.77 3.06 2.16 1.94 2.06 1.38

Az – – 3.28 1.51 2.40 1.92 1.69 2.28 1.70 1.61

Gx – – 1.73 1.61 2.00 1.65 1.65 1.18 1.65 1.44

Gy – – 2.42 2.14 2.37 2.56 2.71 1.57 2.33 2.01

Gz – – 2.24 1.95 2.75 2.21 2.00 1.61 2.43 1.92
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Figure 7. Bar graphs of the features’ importance computed during body height classification using the
10-fold cross-validation strategy. The graphs present a comparison of the importance of each feature
(in %) with respect to different sensor positions. In general, all features are significantly contributing
in the classification task.
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3.4.3. Age Classification

For the location at the chest, the importance of the features is similarly distributed as in the height
classification results: accelerations along the z-axis contributed most, especially the mean, maximum,
RMS and energy. These are associated with the motion of the upper body in the dorso-ventral
direction. Furthermore, the minimum acceleration along the x-axis, i.e., the cranio-caudal axis, is
important. For the lower back, the most important features are associated especially with acceleration
of the z-axis. This is similar to the results found in the height classification scenario and corresponds
to changes in the velocity of the movement of the hips within the sagittal plane, i.e., front to back.
For the right wrist, features associated with acceleration along each of the three axes contribute
significantly. Additionally, the minimum angular velocity associated with rotation around the z-axis,
i.e., swinging laterally, is important. For the ankles, the contribution of features associated with lateral
acceleration is high. Additionally, angular velocities associated with swinging of the feet from side
to side (around the z-axis), as well as rolling over from heel to toes (rotation around the y-axis) are
significant contributors. Figure 8 shows bar graphs of the features’ importance computed during age
classification. The graphs present a comparison of the importance of each feature (as percentage)
with respect to different sensor positions. In general, all features are significantly contributing in the
classification task. An overview of contribution percentages where the most important features are
highlighted is given in Table 9.
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Figure 8. Bar graphs of the features’ importance computed during age classification using the 10-fold
cross-validation strategy. The graphs present a comparison of the importance of each feature (in %)
with respect to different sensor positions. In general, all features are significantly contributing in the
classification task.
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Table 9. Features’ importance computed during age classification using the 10-fold cross-validation
strategy. The top 5 contributing features are highlighted with bold text. All values are the percentage.

Len Dur Mean SD Min Max RMS Ent E Amp

Chest

Ax 1.50 1.46 2.26 2.29 3.25 2.37 2.89 2.00 1.75 2.21

Ay – – 2.74 1.83 1.97 2.16 1.73 1.67 1.83 2.11

Az – – 3.63 2.31 2.98 3.17 3.40 2.19 3.11 1.54

Gx – – 1.49 1.44 1.31 1.43 2.24 1.47 2.38 1.76

Gy – – 0.99 2.00 2.09 2.05 1.95 0.90 1.90 1.30

Gz – – 1.28 2.14 1.56 1.49 1.92 1.10 2.02 1.42

Lower Back

Ax 1.22 1.28 1.51 1.99 1.49 1.63 1.91 1.69 1.42 2.26

Ay – – 2.99 1.29 1.73 1.85 1.65 1.74 1.61 1.22

Az – – 4.75 2.22 4.15 3.28 2.80 2.38 2.76 1.56

Gx – – 1.64 2.86 1.72 1.63 1.58 1.25 1.62 1.67

Gy – – 1.35 2.16 2.06 2.09 2.17 1.44 1.98 1.95

Gz – – 1.90 1.94 1.59 1.74 2.38 1.81 1.94 3.17

Right Wrist

Ax 1.68 1.65 1.66 2.10 1.62 1.66 1.93 2.05 2.65 1.98

Ay – – 2.71 1.85 2.60 2.65 2.15 1.73 2.00 1.52

Az – – 2.35 1.96 2.42 3.42 2.35 1.97 2.17 1.52

Gx – – 1.81 1.56 1.67 1.34 1.75 1.44 1.68 1.35

Gy – – 1.78 2.14 1.63 2.18 1.97 1.74 2.07 1.67

Gz – – 2.03 2.57 2.79 2.23 2.25 1.81 2.26 1.95

Left Ankle

Ax 1.10 1.15 1.29 1.66 2.16 1.79 1.70 1.35 1.59 1.58

Ay – – 2.58 1.63 2.54 1.84 2.06 1.70 1.94 1.54

Az – – 2.75 1.68 3.42 2.84 1.58 2.27 1.83 1.80

Gx – – 2.20 1.96 2.47 1.62 1.93 1.56 1.81 1.78

Gy – – 2.21 1.96 2.14 4.72 1.79 1.81 2.06 1.84

Gz – – 2.52 1.94 2.56 2.09 1.93 1.74 2.06 1.90

3.5. Classification Results Based on Restriction to Subgroups

Since the correlation between body height and gender is very high (on average, men are
taller than women), we performed a gait-based classification task on each of the groups of female
and male participants in order to present height classification results that are independent of this
particular phenomenon. Moreover, we also performed age classification on the data of each subgroup
(female vs. male) separately. The number of subjects present in the study did not allow for ternary
classification of subgroups (see Table 5 for the population characteristics). Therefore, there were two
different classes in the height-related experiment: C1

H = the body height of the subject is less than or
equal to th cm; C2

H = the body height of the subject is greater than th cm (th = 180 for male, th = 170
for female subjects). In the age-related experiment, assigned classes were: C1

A = the subject is less
than or equal to ta years old; C2

A = the subject is greater than ta years old (ta = 40 for male, ta = 50 for
female subjects).

Table 10 shows an overview of the results. It is quite clear that the results are very good in all
cases with the classification rate higher than 90% in all but two cases (89.34% and 87.97% for the
right wrist sensor in both female groups). The results also present balanced sensitivity, specificity,
the positive predictive value (PPV) of each class and the average PPV of all classes. For body height
classification, PPVC1 represents the PPV of the class C1

H , and PPVC2 represents the PPV of the class
C2

H . For age classification, PPVC1 shows the PPV of the class C1
A, and PPVC2 shows the PPV of the

class C2
A.
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Table 10. Results of body height and age classifications within participant subgroups using 10-fold
cross-validation. The results show balanced correct classification rates, sensitivity, specificity, the
positive predictive value (PPV) of each class and the average PPV of all classes.

Classification Task Body Part Sensor Class. Rate Sens. Spec. PPVC1 PPVC2 Avg. PPV

Body Height Classification

Male Group

Chest Axyz, Gxyz 95.06 96.74 92.72 94.87 95.33 95.10

Lower Back Axyz, Gxyz 93.46 94.82 91.61 93.93 92.81 93.37

Right Wrist Axyz, Gxyz 93.50 96.77 89.07 92.31 95.32 93.81

Left Ankle Axyz, Gxyz 93.27 94.91 91.20 93.16 93.41 93.29

Female Group

Chest Axyz, Gxyz 91.18 92.84 89.07 91.49 90.77 91.13

Lower Back Axyz, Gxyz 93.22 96.06 89.63 92.13 94.73 93.43

Right Wrist Axyz, Gxyz 89.34 92.97 84.90 88.30 90.78 89.54

Left Ankle Axyz, Gxyz 92.71 94.71 90.08 92.59 92.86 92.73

Age Classification

Male Group

Chest Axyz, Gxyz 93.36 93.12 93.60 93.90 92.79 93.34

Lower Back Axyz, Gxyz 93.61 93.45 93.77 94.01 93.19 93.60

Right Wrist Axyz, Gxyz 93.55 94.40 92.65 93.19 93.95 93.57

Left Ankle Axyz, Gxyz 92.65 92.69 92.62 92.58 92.73 92.65

Female Group

Chest Axyz, Gxyz 92.78 90.04 95.29 94.59 91.27 92.93

Lower Back Axyz, Gxyz 95.05 95.78 94.39 93.92 96.11 95.01

Right Wrist Axyz, Gxyz 87.97 88.79 87.20 86.62 89.29 87.96

Left Ankle Axyz, Gxyz 90.80 87.37 93.74 92.29 89.64 90.96

3.6. Subject-Wise Cross-Validation

In order to show that our results are not caused by over-fitting the classification to specific
subjects rather than learning the properties, we are looking for (gender, height, age), a subject-wise
cross-validation model was also employed (as explained in Section 2.8). Table 11 presents the
classification results of subject-wise cross-validation for all three group classification tasks: gender,
height and age. The feature set contained all features of 6D accelerations and angular velocities (50 in
total). For each sensor position, sensitivity, specificity, the PPV of each class and the average PPV
of all classes were also computed. A comparison of the classification results of group classification
tasks using 10-fold cross-validation and subject-wise cross-validation for chest (CH), lower back (LB),
right wrist (RW) and left ankle (LA) is presented in Figure 9. It is clearly observable that 10-fold
cross-validation outperforms subject-wise cross-validation in all cases.
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Figure 9. A comparison of correct classification accuracy of group classification tasks (gender, height
and age) using 10-fold cross-validation and subject-wise cross-validation. Sensor positions include:
chest (CH), lower back (LB), right wrist (RW) and left ankle (LA). The 10-fold cross-validation model
outperforms the subject-wise cross-validation model in all cases.
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Table 11. Subject-wise classification results of different classification categories: gender, height
and age. The results show balanced correct classification rates, sensitivity, specificity, the positive
predictive value (PPV) of each class and the average PPV of all classes.

Classification Task Body Part Sensor Class. Rate Sens. Spec. PPVC1 PPVC2 PPVC3 Avg. PPV

Gender Classification

Chest Axyz , Gxyz 85.48 85.09 85.88 86.28 84.66 – 85.47
Lower Back Axyz , Gxyz 87.95 85.71 89.71 86.74 88.88 – 87.81
Right Wrist Axyz , Gxyz 78.90 73.50 82.69 74.89 81.63 – 78.26
Left Ankle Axyz , Gxyz 77.14 82.32 72.67 72.17 82.68 – 77.43

Body Height Classification

Chest Axyz , Gxyz 82.87 79.13 91.23 75.00 71.20 91.81 79.34
Lower Back Axyz , Gxyz 84.38 84.88 92.02 83.18 81.98 87.23 84.13
Right Wrist Axyz , Gxyz 72.61 71.98 86.31 80.02 58.66 79.10 72.59
Left Ankle Axyz , Gxyz 67.78 67.84 83.92 84.96 59.57 61.60 68.71

Age Classification

Chest Axyz , Gxyz 68.54 69.38 84.47 59.79 85.62 70.28 71.90
Lower Back Axyz , Gxyz 72.00 72.05 85.61 63.95 72.28 85.23 73.82
Right Wrist Axyz , Gxyz 61.99 61.72 80.96 53.01 68.50 62.84 61.45
Left Ankle Axyz , Gxyz 63.95 63.31 81.91 60.59 55.31 72.88 62.93

In the case of gender classification using chest and lower back sensors, the classification rates
are 7.08% and 6.37% lower than 10-fold cross-validation. For right wrist and left ankle sensors, the
classification rates are 8.26% and 12.83% lower than 10-fold cross-validation. In the case of height
classification using chest and lower back sensors, the classification rates are 6.18% and 6.07% lower
than 10-fold cross-validation. For right wrist and left ankle sensors, the classification rates are 12.18%
and 19.50% lower than 10-fold cross-validation.

For the age classification task, a sharp decline in the classification rates is observable in
subject-wise cross-validation. For chest and lower back sensors, the classification rates are 20.28%
and 16.82% lower than 10-fold cross-validation. For right wrist and left ankle, the classification rates
are 21.51% and 21.79% lower than 10-fold cross-validation. The main reason for such a sharp decline
is because of the unbalanced population in classes C1

A, C2
A and C3

A with a subject ratio of 9:6:11.
On the level of subject-wise cross-validation, it is also possible to address the questions of the

invariance of the features within the different steps of a walking sequence or to come up with random
forest regressions for age and height. Not surprisingly, almost all steps of one walking sequence were
classified identically; 99.1% for gender classification, 98.7% for height classification and 98.4% for age
classification. When performing a random forest regression instead of a classification, we obtained
age classifications with an average RMS error of about 11.51 years and height classification with an
average RMS error of about 9.14 cm.

4. Discussion

4.1. Summary of Findings

The general problem we tackled is the estimation of soft biometric information from one single
step recorded by one inertial sensor. We did so by solving different classification tasks based on
the motion data of human walking steps represented by accelerations and angular velocities. Data
were recorded by one sensor placed at various locations on the human body, namely the chest, the
lower back, the wrist and the ankle. The results show that these classification tasks can be solved
well by using accelerometers and/or gyroscopes at any of the given locations. The classification rates
were highest for sensors located at the lower back and chest in each of the experiments, but still
convincingly high when the sensor is attached to the wrist or ankle.

Our analysis of the feature sets used in each of the experiments has made clear that there is not
one feature mainly responsible for any of the distinctions necessary for a classification. However,
the feature importance in each of the classifications gave pointers as to what combination of features
produces the best results. The most important findings were that angular velocities did not perform
better than accelerations.
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4.2. Comparison with Existing Research

It is not surprising that information about the gender can be recovered by analysis of chest
or lower back movement. The effects of marker placement and viewpoint selection for recording
locomotion are discussed extensively in the works of Troje [2], as was the high relevance of hip
movement for gender classification by human observers. However, we have presented new findings,
namely that accelerations associated with wrist and ankle movement alone allow for classification
of gender, as well. To our knowledge, we are also the first to show that classification of height and
age groups is possible from non-visual features. This is as yet done by solely relying on image- or
video-based features. Makihara et al. [38] introduce a paper on gait-based age estimation by Gaussian
process regression on silhouette-based features of bodies (contrary to face-based age estimation, as
presented by Stewart et al. [39]). Their investigation was based on standard resolution video data.
They have constructed a whole-generation database of over 1000 individuals, their age ranging from
two to 94.

Our initial situation is clearly different from this in terms of sensor modalities. The use of
commercial smart phones and wearables is an attractive chance to monitor biometric properties
nowadays. Mobile phones and smart devices are a convenient platform for recording information
in an every-day setup. Our experiments have shown that information recorded by a single sensor,
such as a smart device, suffices for the estimation of basic soft biometric properties. Particularly, the
wrist was an important subject for tests, because smart devices are commonly worn at that location.

Estimating biometric properties based on motion data makes sense in a number of different
scenarios. In some of them, the focus may be on hard biometric properties in order to facilitate online
identity checks and close security gaps. A number of previous works have shown that identification
and authentication problems can be solved by classification of motion data acquired by mobile
devices. Derawi and Bours [40] show that recognition of specific users can be done in real-time based
on data collected by mobile phones. Their method can correctly identify enrolled users based on
learning templates of different walking trials.

On the other hand, attention may be directed to soft biometric properties. Monitoring health
or preventing and curing injury are use cases that represent this idea. Previous works have shown
that accelerometers are well suited for detection and recognition of events and activity. In their paper
on sensory motor performance, Albert et al. [41] discuss a new method to classify different types of
falls in order to rapidly assess the cause and necessary emergency response. They present very good
results classifying accelerometer data acquired by commercial mobile phones, which were attached to
the lower backs of test subjects. In their comparative evaluation of five machine learning classifiers,
support vector machines performed best, achieving accuracy values near 98%. Classification by
decision trees only performed second best in their experiments at 94% to 98% accuracy for fall
detection and at 98% to 99% accuracy for fall type classification. In their paper on gait pattern
classification, Von Tscharner et al. [42] even conclude that a combination of PCA, SVM and ICA
is most reliable dealing with high intra- and inter-subject variability. However, in their survey on
mobile gait classification, Schneider et al. [43] make an attempt to settle the disagreement about
suitable classification algorithms. In their study, they conclude that random forest is best suited for
the classification of gait-related properties. In our setup, we decided to use random forest in order
to produce comparable results. One additional benefit of this choice is that there is a low number
of parameters that have to be chosen. Furthermore, the random forest method enables computing
the significance and importance of each feature in overall classification. This helped us to investigate
and perform a comparative study of the features’ importance for each sensor position in different
classification tasks.
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4.3. Limitations

Since our database is much smaller than the one introduced by Makihara et al. [38] and the
variety of biometric features was also smaller (e.g., age covered only three decades), our experiments
can only serve as proof of concept for now. Testing classifiers of non-image-based features on a larger
database comprising wider ranges of biometric properties is a direction for future work.

Another limitation of our database is that it only consists of data belonging to patients with
complaints of back pain. It will be worthy to perform further experiments to record data of
participants without back pain (control group). Classification tasks can then be performed for the
patient group, the control group and a combination of both.

One noteworthy limitation we had to face in our experiments is a possible uncertainty of
sensor placement. Irrespective of how carefully each involved sensor is placed, the accuracy of
placement depends on physical characteristics of test subjects, which may vary between individuals
to some extent.

5. Conclusions and Future Work

We have classified biometric information based on the data of a single inertial-measurement unit
collected on a single step. As a novel empirical finding, we have shown that single steps of normal
walking already reveal biometric information about gender, height and age quite well, not only for
measurements of lower back movements or chest movements, but also for wrist movements or ankle
movements. Using standard 10-fold cross-validation, the classification rates have been for gender
classification: 87.16% (right wrist sensor) to 92.57% (chest sensor); height classification: 84.78% (right
wrist sensor) to 89.05% (chest sensor); age classification: 83.50% (right wrist sensor) to 88.82% (chest,
lower back sensor). When using the rather strict subject-wise evaluations, the classification rates
are somewhat lower for gender by 6.37% (lower back sensor) to 12.83% (left ankle) compared to the
results of 10-fold cross-validation. For height classification, the classification rates using subject-wise
evaluation are 6.07% (lower back sensor) to 19.50% (left ankle sensor) lower, and for age classification,
16.82% (lower back sensor) to 21.79% (left ankle sensor). These values can be seen as “lower bounds”
on the possible classification rates on the biological variations, since also our feature selection, as well
as our used machine learning techniques might not be optimal. Especially, a good estimate of the
direction of gravity should improve the results; at sensors position with less change in orientation
(chest, lower back), the classification rates had been better than at the ones with higher change (wrist,
ankle). In future work, we will try to adopt a model-based estimate of body-part orientation using
techniques similar to the ones used in [17] to come up with such estimates.

On the side of the basic science questions about human movement control, we want to address
questions about to which degree the movement patterns can be “spoofed” by trained and untrained
persons in future work. We will perform tests asking probands to try to walk like the other gender, to
pretend to have another age or to have another height, etc.

On the technological side, our work should help to gain information on the user by
smartwatches, smartphones or smart shoes, given the fact that many sensor systems for consumer
electronics are limited: long time recordings can be done in low frame rates only or high speed
measurements can be done for a limited amount of time, to save battery life time. Thus, it is more
and more important to get information out of sparse sensor readings. Our work presents a technique
where biometric parameters can be estimated from single steps. These biometric parameters can be
used for further analysis of motions that are recorded with lower frame rates. Compared to previous
work, where full sequences are considered for classification, we see this as a strong improvement.

However, our work also demonstrates the sensitivity of sensor data of such devices with respect
to privacy concerns: already, the information on a single step recorded from a smartphone or
smartwatch reveals personal information on gender, height and age.
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