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Abstract: We propose an efficient and novel architecture for 3D articulated human pose retrieval
and reconstruction from 2D landmarks extracted from a 2D synthetic image, an annotated 2D image,
an in-the-wild real RGB image or even a hand-drawn sketch. Given 2D joint positions in a single
image, we devise a data-driven framework to infer the corresponding 3D human pose. To this end,
we first normalize 3D human poses from Motion Capture (MoCap) dataset by eliminating translation,
orientation, and the skeleton size discrepancies from the poses and then build a knowledge-base by
projecting a subset of joints of the normalized 3D poses onto 2D image-planes by fully exploiting
a variety of virtual cameras. With this approach, we not only transform 3D pose space to the
normalized 2D pose space but also resolve the 2D-3D cross-domain retrieval task efficiently. The
proposed architecture searches for poses from a MoCap dataset that are near to a given 2D query
pose in a definite feature space made up of specific joint sets. These retrieved poses are then used to
construct a weak perspective camera and a final 3D posture under the camera model that minimizes
the reconstruction error. To estimate unknown camera parameters, we introduce a nonlinear, two-fold
method. We exploit the retrieved similar poses and the viewing directions at which the MoCap
dataset was sampled to minimize the projection error. Finally, we evaluate our approach thoroughly
on a large number of heterogeneous 2D examples generated synthetically, 2D images with ground-
truth, a variety of real in-the-wild internet images, and a proof of concept using 2D hand-drawn
sketches of human poses. We conduct a pool of experiments to perform a quantitative study on
PARSE dataset. We also show that the proposed system yields competitive, convincing results in
comparison to other state-of-the-art methods.

Keywords: motion capture; feature sets; 3D human pose retrieval; knowledge-base; 3D articulated
pose estimation; optimization

1. Introduction

Understanding of human motion and the analysis of human behavior have been
widely studied and investigated by researchers from various domains in the last few
decades. The estimation of human poses, either in the 2D or 3D domain, may be considered
a key component in analyzing human behavior. Thus, the demand and need to capture
and generate 3D human motion are continuously increasing [1]. There exist a variety of
professional systems to capture human motions, i.e., magnetic or acoustic-based systems [2],
optical motion capture systems [3], and virtual marker-based systems [4,5] like Vicon, MX
and Giant, etc. Among all these MoCap systems, virtual marker-based MoCap systems are
prevalent and considered conventional and standard techniques. However, these systems
require an indoor studio-like hardware setup, which is highly expensive. In practice, the
marker-attached suit and the studio-like indoor environment prevent capturing of realistic
human motions in some cases. Additionally, these systems need extensive post-processing
and after-efforts to deal with missing and corrupted data to generate accurate 3D human
captured motions [6]. As an alternative, depth cameras (like Microsoft Kinect), which are
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less expensive, easy to handle, and more convenient in handling, have been used. The
depth cameras hold a significantly less operational range, i.e., 1.0 m to 4.0 m. They are not
very feasible in outdoor environment as the infrared system of the depth cameras is easily
distorted by sunlight.

Despite all these above-mentioned MoCap systems, we have to deal with a bulk of in-
the-wild 2D images/videos available on the internet and social media, which have no depth
information at all. Hence, to meet the massive demand for MoCap data, many research
works have been performed to infer 3D human poses from internet-based in-the-wild real
2D images/videos [7–13]. Due to the curse of dimensionality and the ill-posed nature [14],
there are open challenges connected to lifting 2D poses up to 3D poses. 3D human motion
capturing from in-the-wild 2D pictures and videos will empower many vision-dependent
applications such as health rehabilitation-based industries, robotics, virtual reality, en-
tertainment, surveillance systems, and human-computer interaction [15]. We propose a
data-driven architecture that first searches for and retrieves K nearest neighbors (Knn) from
MoCap datasets and then uses these retrieved Knn for online 3D articulated human pose
configurations from the given input 2D image landmarks. The reconstruction of a 3D artic-
ulated human pose from a monocular, single, and static 2D image is an ill-posed problem
as: (i) there may be multiple 3D human poses matching a single static 2D image-based pose,
(ii) the completely unknown camera parameters, (iii) absolute missing of depth knowledge,
(iv) the irreversible nature of the weak perspective projections. Our data-driven pipeline
depends on efficient and fast searching and retrieval of a fixed-number of similar poses
from the underlying motion capture dataset. Thus, we devise and investigate a variety of
feature sets consisting of different joint combinations. In this way, we make the process of
searching and retrieval more convenient and proficient. Once found, these Knn are utilized
to estimate the unknown camera parameters and predict the final 3D articulated human
pose. As input to the proposed system, we use 2D landmarks that are extracted from the (a)
heterogeneous 2D synthetic examples created from MoCap data by utilizing some random
camera parameters, (b) detected or annotated 2D pose in RGB images (c) in-the-wild real
images, or (d) hand-drawn sketches of human postures. We provide 2D feature sets to the
system drawn out from the single static 2D input query and then search for and retrieve
Knn from the developed knowledge-base. The knowledge-base incorporates normalized 3D
pose space and the relevant normalized 2D pose space established through an orthographic
projection of normalized 3D pose utilizing various virtual cameras. We, in fact, develop the
knowledge-base to address the issue of the 2D-3D correspondence. As a result, we efficiently
deal with the 2D-3D cross model Knn search and retrieval. We benefit from these K nearest
neighbors in several ways: (i) We first predict the unknown camera parameters utilizing
these Knn combining with the information of the view directions at which MoCap data
is sampled. (ii) We also learn a local pose model using these retrieved Knn in a Principal
Component Analysis (PCA) space.

We optimize the low-dimensional local model through our objective function with
different error terms, i.e., retrieved pose error and the projection error, using a gradient-
descent-based optimization algorithm. We perform quantitative evaluations of our pro-
posed architecture on a pool of synthetic 2D images, collected from a variety of activities.
We work on benchmark MoCap datasets, i.e., CMU MoCap dataset [16], HDM05 MoCap
dataset [17], and Human3.6M [18]; all these datasets are available publically. We also report
the qualitative evaluations of our proposed approach on in-the-wild real images taken
from PARSE dataset [19] and 2D hand-drawn human poses. We compare the proposed
system with other state-of-the-art methods. The results yield that our architecture executes
compelling performance comparatively.

We organize this work as follows: We first illustrate the existing 3D pose prediction
approaches in Section 2. We demonstrate all the necessary steps of the proposed architecture
in Section 3. In Section 4, we describe and discuss the experiments as well as the obtained
results. A comparison of our methodology with other state-of-the-arts is also discussed in
detail in Section 4. In the end, we conclude this work in Section 5.



Sensors 2021, 21, 2415 3 of 28

2. Related Work

Human motion capturing and the analysis of the generated motion data is a rapidly
growing area in computer vision, computer graphics, and human-computer interaction.
A lot of research has already been done on 3D reconstruction and analysis of human
motions or poses. Recently, the popularity of 3D human pose prediction from a single
static 2D images are growing day by day. The literature for 3D human pose prediction may
be categorized as (i) generative approaches [20–22], which depends on the best possible
alignment with the image descriptors/features and focus on modeling the underlying
patterns of the image descriptors/features. These approaches require some realistic and
reasonable initializations. (ii) The discriminative models or conditional models [23–28] do
not rely on the image features’ alignment. Still, they aim to find the decision boundary
and ultimately direct 3D mapping from the input data. A few approaches [23,25,26,29,30]
exploit discriminative techniques to learn a model from the image descriptors (e.g., HOG,
SURF, SIFT, etc.) to estimate 3D articulated human pose. At the same time, some works use
a deep CNN [27,28]. (iii) The deep learning-based approaches [12,14,27,28,31,32] which do
not rely on hand-crafted features/descriptors but learn features and mapping to 3D human
poses directly. (iv) There also exist hybrid approaches [6,33,34] that combine together the
generative as well as discriminative methods. The authors in [33] estimate 3D human pose
by fully exploiting the generative probabilistic kinematic model for the 3D human pose
hypothesis and the discriminative 2D body part detectors that weigh those hypotheses.
In [34], 3D Pictorial Structure Model (PSM) is proposed where the regression forests are
learned to predict 3D joint location probabilities, and ultimately the PSM optimizes the 3D
articulated pose.

There exist a bulk of approaches that predict 3D articulated pose in a semi-supervised
fashion. Zhou et al. in [11] propose a transfer learning approach in a weakly-supervised
way. They train their network in an end-to-end manner and predict 2D pose and learn to
estimate the depth information simultaneously. Yang et al. in [9] propose a dual-source
adversarial learning approach, where they introduce the multi-source discriminator that
is learned to distinguish the estimated 3D poses from the ground-truth poses. As a
result, the pose estimator is forced to produce plausible poses that are anthropometrically
valid, even with the unannotated in-the-wild images. In [13], the authors propose a fully
CNN architecture that deploys temporal convolutions on 2D features in order to infer the
accurate 3D pose in the video. Additionally, they also develop a semi-supervised method
that deploys unlabeled video input data. They need the only camera intrinsic parameters
instead of 2D annotations.

Ramakrishna in et al. [35] estimate 3D articulated pose where they design an over-
complete dictionary comprised of vectors. They first categorize the training data into classes
and then apply class-wise PCA to get their set of base vectors. They also enforce kinematic
constraints utilizing information of the limb lengths. Fan et al. in [36] enhance the approach
of [35] and introduces a model named Pose Locality Constrained Representation (PLCR)
for estimation of 3D human poses. They build up a hierarchical human pose-tree through
sub-clustering of human pose data. They develop a dictionary of the block-structural pose
based on all the subspaces involved in the human pose-tree. Wang et al. [37] predict 3D
human pose by exploiting the basis vectors combined with anthropometric constraints. For
2D poses estimation, they deploy a 2D pose estimator [38]. They optimize their objective
function by utilizing the L1 norm. Kanazawa et al. in [39] propose Human Mesh Recovery
(HMR) that do not depend upon intermediate 2D image-based feature detections but
predict the human shape and 3D articulated pose parameters from the pixels of the 2D
input image directly.

Plenty of research works for 3D pose prediction [8,10,40–44] exploit prior knowledge
available in MoCap dataset. Most of these data-driven methods need to reduce the curse of
dimensionality to learn and train local models utilizing prior existing knowledge [20,40,42,45,46].
In [44], the authors propose a technique to animate the 2D characters in pictures using 3D
MoCap dataset by fitting and deforming a 3D mesh model. The authors in [10] propose
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a dual-source approach—the annotated 2D poses and the accurate 3D MoCap data—
predicting 3D pose by integrating both sources for efficient 3D human pose retrieval and
reconstruction. The authors extend their work in [47] by improving the optimization pro-
cess. Zhou et al. [48] propose an example-based approach that preserves locality similarity
to infer 3D human pose. They extract the body parts having kinematic priors from the
detected 2D pose and integrate them with 3D body parts to infer the 3D pose. In [49],
authors estimate 3D pose by employing the process of memorization and warping the
given 2D pose with a 3D pose library.

All approaches mentioned above or 3D estimator require the 2D pose estimation,
which may be the joint locations, the silhouettes, or the limb edges. A few methods [50,51]
label 2D joint location manually, a few approaches [37,46] exploit off-the-shelf 2D pose
detector, and some works [52,53] deploy depth images for the prediction of 3D human
poses. Another category of research work that estimates 3D articulated human pose
utilizing Kinect cameras [54,55]. Several approaches have been seen in the literature that
use the synthetic input data [7,8,15,21,35,36,43]. In [36], Fan et al., first project the pose
with 18 joints into 2D space through a camera matrix generated by randomly selected
camera parameters. They use CMU MoCap dataset. In [43], the authors create 2D synthetic
videos using the HDM05 MoCap dataset, while [8] generate 2D synthetic poses for 3D
reconstruction from the CMU MoCap dataset through a weak perspective camera model.
In [7], the authors develop an image-dependable synthesis engine that generate a training
dataset of in-the-wild synthetically. They compose the real images with synthetic 2D pose
based on 3D MoCap data. They select 12,000 poses from the CMU MoCap dataset and
sample 180 virtual views randomly. As a result, they create roughly 2M 3D/2D pose pairs.
The authors in [56] annotate in-the-wild images by combining with ordinal depths of human
joints, while [57] combine in-the-wild images with forward and backward information of
every bone involved in the skeleton. Wang et al. [15] introduce a stereo-based artificial
neural network to reconstruct the 3D poses from just two different viewpoints instead
of deploying multi-view images. Their stereoscopic view synthetic subnetwork creates a
2D pose with right view from the given 2D pose with the left viewpoint. They generate
the synthetic data through the unity toolbox in order to train the subnetwork. In our
case, we develop synthetic 2D poses from the CMU MoCap dataset, use a 2D human
pose detector [38] to predict 2D joint locations, and label 2D joint location manually from
hand-drawn sketches.

3. Methodology

Our proposed methodology consists of multiple vital steps, which we discuss one by
one in detail as below. The detailed version of the proposed system is presented in Figure 1.

3D Pose
Reconstruction

Refine Camera 
Parameters𝓤,𝓜

3D Pose Local
Modeling 

3D Pose
Synthesize Knn Retrieval

2D Query Inputs
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Figure 1. System architecture diagram. First a knowledge-base is developed for efficient 2D-3D correspondence, which involves
the process of normalization, projection of the normalized 3D human poses onto the image-plane and the kd-tree development.
The input to the system is either a synthetic 2D pose, an internet sport image or a hand-drawn sketch. A 2D feature set, i.e.,
F im
J ∈ {F

im
5 ,F im

7 ,F im
9 ,F im

11 ,F im
14 } is used to search and retrieve Knn, which are further exploited in 3D reconstruction.
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3.1. Pose Skeleton Description

We denote a 3D pose by X in Cartesian pose space R, which comprises of a set
of N = 18 number of joints for CMU [16] and HDM05 [17] MoCap datasets, while for
Human3.6M [18], a 3D pose X consists of N = 14 joints only. In case of 3D pose, the
skeleton models S with all 14 or 18 number of joints are shown in Figure 2a and Figure 2b
respectively. The skeleton model S with 18 joints (CMU [16] and HDM05 [17]) comprises
of left and right hips (J lh and J rh), left and right knees (J lk and J rk), left and right ankles
(J la and J ra), left and right feet (J l f and J r f ), left and right shoulders (J ls and J rs), left
and right elbows (J le and J re), left and right wrists (J lw and J rw), head (J hd), neck (J nk),
chest (J ch), and the root joint (J rt). The skeleton model S with 14 joints (Human3.6M [18])
consists of J lh, J rh, J lk, J rk, J la, J ra, J ls, J rs, J le, J re, J lw, J rw, J hd, and J nk.
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Feature sets (F im
J ) No. of Joints Joint combinations in feature sets (F im

J )

F im
5 5 J = {J la,J ra,J hd,J lw,J rw}
F im

7 7 J = {J la,J ra,J hd,J ls,J lw,J rs,J rw}
F im

9 9 J = {J lk,J la,J rk,J ra,J hd,J le,J lw,J re,J rw}
F im

11 11 J = {J lk,J la,J rk,J ra,J hd,J ls,J le,J lw,J rs,J re,J rw}
F im

14 14 J = {J lh,J lk,J la,J rh,J rk,J ra,J nk,J hd,J ls,J le,J lw,J rs,J re,J rw}

(a) Human3.6M Skeleton (b) CMU/HDM05 Skeleton

(c) Feature sets with number of joints and the joint combinations.

Figure 2. (a) The skeleton model S contains 14 joints for Human3.6M MoCap dataset and (b) 18 joints for CMU/HDM05
MoCap datasets, while (c) demonstrates all feature sets with different joint combinations.

Every joint J ∈ R3 in the skeleton has x, y, and z components denoted as J (x), J (y),
andJ (z) respectively. A joint, e.g., the root joint, is expressed asJ rt = [J rt(x),J rt(y),J rt(z)].
Finally, a 3D pose becomes X = {J i}N

i=1, which shows the joint positions of the skeleton. In
contrast, a pose with joint angle configurations in Quaternion pose space Q is represented by
Q. A synthesized pose with joint positions in Cartesian pose space R is denoted by X̃, and
with joint angle configurations is expressed as Q̃. A limb length between the parent joint
J p and the child joint J c is represented by L(p,c) and the average limb length computed by
taking an average of all limb lengths in the skeleton S is denoted as L′(p,c). A 2D human pose

is expressed by x. In case of 2D pose x, each joint J ∈ R2 comprises of x and y components
only, and the extracted image-based 2D feature sets are expressed by F im

J with different
number of joints as described in Figure 2c, e.g., image-based 2D feature sets with 5 number of
joints, F im

5 , consists of J = {J la,J ra,J hd,J lw,J rw}.
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3.2. Normalization

In pre-processing, we first normalize 3D poses in MoCap dataset in order to neutralize
the differences that may exist in performing the same motion due to some additional
information of translation and orientation. We are interested only in how the actions are
executed and the posture are formed rather than focusing on where and at what view the
postures are developed, i.e., the poses with translational and orientational information.
The same two poses may have different coordinates due to this additional information of
translation and orientation. In addition to all these, we also normalize the skeleton size of
the performing actor.

3.2.1. Translational Normalization

In translational normalization, we discard the translational information so that the
3D articulated human pose must hold on the center of the body’s mass, i.e., the root joint
of the skeleton, at (0,0,0) coordinates in the Euclidean space. In case of Human3.6M [18]
MoCap dataset, we compute the root joint of the skeleton by taking the average of the left
and right hip joints,[

J rt(x) J rt(y) J rt(z)
]
=

[
J lh(x) + J rh(x)

2
J lh(y) + J rh(y)

2
J lh(z) + J rh(z)

2

]
, (1)

where J lh and J rh donate the left and right hip joints of the pose respectively. We sub-
tract the coordinates of each joint from the coordinates of the root joint to eliminate the
translational information,

Ĵ i = J i −J rt and i ∈ {1, 2, 3, . . . , N}, (2)

where J rt donates the root joint of the pose. After the translational normalization, all the
poses transformed into position invariant coordinate system in Euclidean space.

3.2.2. Orientational Normalization

In orientational normalization, we eliminate the orientation such that the pose has a
frontal view only. All the joints of a pose are rotated by the y-axis, which is facing upward,
such that the actor must face a frontal view with the positive x-axis while the hip joints
must be parallel to the z-axis. For all that process, we first compute the rotation angle at
which all the joints are rotated, utilizing the hip joints, J lh and J rh, as,

θ = arctan
{
J lh(x)−J rh(x)
J lh(z)−J rh(z)

}
, (3)

After having the estimated rotation angle, the x- and z-axes of each joint are turned by
angle θ while the y-axis remains unchanged.

[
J i(x) J i(y) J i(z) 1

]
=


J i(x)
J i(y)
J i(z)

1


T

cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1

 and i ∈ {1, 2, 3, . . . , N}, (4)

This step is the same for both types of skeletons used in this work.

3.2.3. Skeleton Size Normalization

We also normalize the skeleton’s size because the people vary in their heights. As a
result, the coordinates of the same pose of two actors of different heights may differ from
each other significantly. Each limb length of the skeleton is scaled up to an average limb
length over a given entire population of the MoCap dataset. In the line of [58], taking the
root joint, J rt, as a parent joint J p, all coordinates of its child joint J c are scaled in a way
that the limb length that connects these joints is transformed to the average limb length
L′(p,c) as,
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J ′c =
(
J c + α · L(p,c)

)
, (5)

α =
L′(p,c)

‖L(p,c)‖
(6)

We adjust each limb length recursively to average limb length based on the kinematic
tree of the skeleton. Hence, the described procedure works for both skeleton types.

3.3. Search and Retrieval

In an exemplar-based reconstruction methodology, the critical component is an effi-
cient and fast search and retrieval of Knn from the MoCap dataset. We have normalized
3D pose space, which includes only normalized 3D poses. We are dealing with a 2D image-
based skeleton input query—that may be in the form of a synthetic 2D image generated
through the projection of a 3D pose with some random camera parameters like in [35,36]
or an image with 2D ground-truth pose, or an in-the-wild real picture or a 2D hand-drawn
human pose, while our database consists of only 3D poses. Furthermore, our 2D input
query pose has an absolute lack of knowledge like: (i) the camera parameters including
depth information, (ii) the exact locations of the joints, (iii) the kinematic constraints of
an image-based 2D skeleton, and (iv) the temporal coherence. We build an intermediate
container named a knowledge-base to resolve this 2D-3D cross model search and retrieval
problem. Through this, we not only resolve the issue of 2D-3D cross model retrieval but
also make the process of search and retrieval more robust and convenient. We develop
our knowledge-base by performing several steps like (i) we define 3D feature sets from the
already developed normalized 3D poses and place them into the knowledge-base as the first
component. (ii) We then create 2D pose space through an orthographic projection of 3D
feature sets onto 2D image-based plane utilizing several virtual cameras. 24× 7 virtual
cameras are used, which have azimuth angles (0–345◦) and the elevation angles (0–90◦);
both contain step size equal to 15◦. (iii) We further re-scale the projected 2D normalized
poses so as to fit it between some arbitrary scaling factor, i.e., [−1, 1]. We, then, also add
these 2D normalized poses into our developed knowledge-base.

We design various feature sets based on skeleton joints’ subsets with different joint
combinations to make similarity search fast and robust. These subsets of skeleton joints
must hold the appropriate skeleton characteristics. According to [43,59], the most worthy
and contributing joints in any type of pose are the end effectors (right/left hands and
feet) and the head, which ensures not only the skeleton structure but also speed up the
process of similarity search. As we are tackling 2D image-based input queries with no
supporting cue, we may not rely on only the end effectors, but we must add up a few more
joints. That’s why we devise several feature sets, i.e., F im

5 , F im
7 , F im

9 , F im
11 , F im

14 . The details
about all these feature sets as well as the corresponding subsets of joints are presented in
Figure 2c, while the performance of these feature sets is elaborated in Section 4.3.

With the knowledge-base with different normalized pose spaces, 2D image-based input
query pose is given to the system. First, we normalize the 2D query pose by removing
the translational information, i.e., we transform all the joints to their center of the mass by
subtracting the root joints from all other joints in a 2D domain. We re-scale the normalized
2D pose in order to fit it according to the fixed arbitrary scaling factor. In short, we here
normalize the 2D poses based on translation and the size of the skeleton of the pose. There
is no need to perform the orientation normalization as we have already developed 2D
normalized pose space by exploiting various virtual cameras to deal with. We define 2D
feature sets from the normalized 2D input query pose. The 2D feature sets—either available
in the knowledge-base or extracted from the 2D input query pose—both have become similar,
equivalent, and comparable to each other for efficient 2D-3D cross domain search and
retrieval of Knn. In the line of [41,43,59], we deploy kd-tree data structure for fast searching
and retrieval of Knn.
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3.4. Camera Parameters

We work with the weak perspective camera matrix M with intrinsic and extrinsic
camera parameters, which is defined as,

M = H
[
R(α,β,γ) | T(x,y,z)

]
, (7)

where H denotes intrinsic and
[
R(α,β,γ) | T(x,y,z)

]
represent extrinsic camera parameters.

The intrinsic camera parameters H is expressed as,

H =

sx κ εx
0 sy εy
0 0 1

 f 0 0
0 f 0
0 0 1

, (8)

where sx and sy are the scales along x and y-axis, κ is the skew coefficient, εx and εy
are the principal points along x-axis and y-axis, and f is the focal length. In our weak
perspective camera model, we assume square-pixels, due to which the scaling factor sx
becomes equal to sy. The principal points εx and εy are considered image centers ideally,
and κ is set to be zero. Ultimately, with these values, the above intrinsic camera parameters
Equation (8) becomes,

H =

s 0 εx
0 s εy
0 0 1

 f 0 0
0 f 0
0 0 1

 =

ρ 0 εx
0 ρ εy
0 0 1

, ρ = s f . (9)

The extrinsic parameters
[
R(α,β,γ) | T(x,y,z)

]
involve 3 orientational variables (α, β

and γ) and 3 translational variables (Tx, Ty and Tz). Adopting the same formulation as
in [6,21,35–37] where γ = 0 and Tz = 1. As a result, the projection matrixM becomes,

M =

ρ 0 εx
0 ρ εy
0 0 1

[R(α,β,0) | T(x,y,1)

]
(10)

Moreover, the translational parameters are taken as zero, considering that the centroid
of the 3D pose coincides with the center of the mass of the 2D pose. The first two rows of
M are orthogonal to each other since it is a weak perspective projection matrix.

In order to estimate the rest of the camera parameters, we formulate the two-fold
nonlinear energy minimization method as,

Ecp = arg min
U ,M

(aEa + bEb), (11)

where U is a vector that contains the retrieved camera viewpoints. Ea and Eb donate
the energy terms that we explain in the next paragraphs, while a and b are the related
energy weights, which are the user-defined constants. We set the energy weights a and b
equal to 0.45 and 0.55, respectively. These values are based on findings that we report in
Section 4.2.4.

In the first phase, we estimate the orientation information R(α,β,0) from the retrieved
nearest neighbors as well as from the projection of the normalized 3D poses at different
view directions available in the knowledge-base. We consider this orientation estimation as
the multi-label classification problem, where the number of classes is equal to 24× 7 in
correspondence to the virtual cameras (see Section 3.3). From the 2D input query pose,
we retrieve the fixed size nearest neighbors with the information of view angles, i.e., the
azimuth as well as the elevation angles. Each nearest neighbor executes the specific class
of azimuth and elevation angle to which it belongs to. In this way, we develop the voting
clusters and, ultimately, the histograms of orientations for azimuth and elevation angles
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separately based on majority voting. For example, in Figure 3a, the voting clusters for
azimuth and elevation angles are expressed with yellow cross (×) symbols. Any specific
virtual camera class with some higher votes results in a bigger cluster described with the
bigger-sized yellow cross (×) symbol. We further illustrate the results of the voting clusters
more precisely with histograms of orientations for azimuth angles as well as elevation
angles, as reported in Figure 3b and Figure 3c respectively. To this end, we have the primary
prediction for the camera viewpoints, considered the initialization for the estimation of
the final camera parameters. Then, we optimize these voting clusters of the camera view
directions utilizing the square-root kernel function as,

Ea(U ) =
K

∑
k=1

√
‖U − Vk‖2, (12)

where the terms Vk donates the k-th viewpoint observed during retrieval of fixed size
nearest neighbors.
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Figure 3. (a) An example to elaborate the estimation process of the camera viewpoints. The symbols
yellow cross (×) represent the clusters of the viewpoints that we develop with the help of the retrieved
nearest neighbors as well as from the projection of the normalized 3D poses at different view
directions available in the knowledge-base. The symbol of the bigger-sized yellow cross (×) indicates a
cluster of bigger size, i.e., the more number of similar poses are retrieved at this specific view angles
compared to the symbol of the smaller cross (×). The dark black circle shows the results obtained
using the symmetric square root kernel function. The blue circle expresses the simple arithmetic
mean function, and the cyan square elaborates the ground-truth values. (b) shows the histograms of
orientations developed on account of azimuth angles, while (c) shows the histograms of orientations
for elevation angles. We have fixed the size of nearest neighbors equal to 1024 for this experiment.

In the second phase, we further fine-tune the camera view directions and estimate
the rest of the camera parameters. Having in hands the 2D joint locations of the input 2D
query pose, the 3D K-nearest neighbors, and the primarily predicted camera viewpoints,
we fine-tune the camera parameters as,

Eb(M) =
K

∑
k=1

√
∑

i∈JF
‖M · Xi,k − xi‖2, (13)

where the notation xi represents the ith 2D joint location and Xi,k is the ith 3D joint location
of the kth nearest neighbor. For optimization, we employ the square root function as
a symmetric kernel function because such a type of kernel-based representation is very
appropriate to predict the arbitrarily shaped probability density with multiple peaks [41].
The multiple peaks may occur with the retrieval of multivariate Knn, as evident in Figure 3.
We can still find the global minimum utilizing the square root kernel function even with
numerous peaks compared to the simple arithmetic mean function. The two-fold nonlinear
energy minimization method provides us a good initialization of camera view directions in
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the first phase and fine-tunes them further in the second phase. These initializations are
the essential part in order not only to estimate the accurate camera parameters but also to
speed up the minimization process. The orientation information U and the final camera
matrixM are optimized using the Levenberg-Marquardt optimization algorithm using the
nonlinear optimizer.

3.5. Pose Reconstruction

The proposed framework’s final goal is to infer a plausible 3D pose from the image-
based 2D input query. For that purpose, we employ the prior existing knowledge already
available in the MoCap dataset. We acquire this knowledge through our developed
knowledge-base in the form of K nearest neighbors. We compute a linear local pose model
using the retrieved similar poses Q = {Q1, . . . , QK} by exploiting Principal Components
Analysis (PCA),

Q̃ = CB + µ, (14)

where the notation B denotes basis vectors, C is the current 3D human pose in PCA space,
and µ is the mean pose of the Knn. We formulate the energy minimization problem as,

Q̂ = arg min
Q̃

(ωpEp + ωcEc). (15)

where Ep and Ec represent the energy terms. Ep measures and reduces the deviation from
the retrieved Knn while Ec decreases the projection error with 2D input query pose. ωp
and ωc are the associated energy weights for energy terms Ep and Ec respectively. The op-
timizer for 3D estimation may be considered the bottleneck in the proposed approach’s
performance efficiency. We here allocate each joint of the skeleton a specific weight that
depends on the joint’s degree of freedom (dof ). We suppose that the joints containing
higher dof have a deep impact on the body parts’ movements and contribute more to
the joints having lower dof . We will validate this assumption in Section 4.2.3. On that
basis, we assign higher weights to those specific joints having higher dof . For example, the
ball-and-socket joints having 3 dof are allocated higher weights than the hinge joints with
just only 1 dof . We further normalize the assigned weights with min-max normalization
and express them with a vector as w = {w1, . . . , wJ }. We employ the gradient descent
based energy minimization method.

3.5.1. Retrieved Pose Error

As we are dealing with a large heterogeneous MoCap dataset and the input query
comprises a subset of the 2D pose’s joints only, we work with combination of joint angle
configurations and the joint positions to produce 3D plausible results. On this basis,
we penalize the deviation of the synthesized human pose from the retrieved K nearest
neighbors not only in the Quaternion 3D pose space Q but also in the Cartesian 3D pose
space R. In this context, we design the energy term as,

Ep = ωpaEpa + ωppEpp, (16)

where the notations Epa and Epp are the energy terms corresponding to Quaternion pose
space Q and the Cartesian pose space R respectively. The symbols ωpa and ωpp are the
associated weights with Epa and Epp respectively. For Ep, we consider all the joints of the
skeleton model S.

The first part of the energy term, Epa, deals with joint angle parameterizations in the
quaternion pose space Q and compels the synthesized 3D pose Q̃ to be according to the
prior existing knowledge in the MoCap dataset,

Epa(Q̃) =
K

∑
k=1

√
∑

i∈J
‖wi · (Qi,k − Q̃i)‖2, (17)
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where wi is the weight for each joint.
The second part of the energy term, Epp, directly imposes the 3D joint locations of

the synthesized 3D pose in the cartesian pose space R to be according to the retrieved
K nearest neighbors,

Epp(X̃) =
K

∑
k=1

√
∑

i∈J
‖wi · (Xi,k − f(Q̃i,Si))‖2, (18)

where f represents the forward-kinematics function which converts joint angle configu-
rations of the synthesized 3D pose Q̃ into joint positions, X̃. The symbol S denotes the
skeleton model, developed through recursively transforming each limb length L(p,c) to
average limb length L′(p,c) based on the skeleton’s kinematic tree. The notation Xi,k is the
ith joint location of the retrieved kth similar poses.

3.5.2. Projection Control Error

This energy term minimizes the projection error and fits the synthesized pose to 2D
image query pose by utilizing the estimated camera parameters in the projection matrixM,

Ec(X̃) =
√

∑
i∈JF
‖wi · (M· f(Q̃i,Si)− xi))‖2. (19)

We consider here only those joints, JF , which participate in creating the specific feature
set, i.e., F im

11 , and are used in search and retrieval of Knn.

4. Experiments

We evaluate our proposed approach thoroughly on different types of MoCap datasets
qualitatively as well as quantitatively, namely CMU [16], HDM05 [17], and Human3.6M [18]
MoCap datasets. Moreover, we test our proposed system on different categories of input
testing datasets: synthetic 2D images, annotated 2D images, the in-the-wild internet real im-
ages, or even the hand-drawn sketches. Similar to [36], we deploy the skeleton that consists
of 18 joints for CMU [16] and HDM05 [17] MoCap datasets. These joints are head, neck,
shoulders, chest, elbows, wrists, root, hips, knees, ankles, feet, as reported in Figure 2b.
The body skeleton, in case of Human3.6M [18] MoCap dataset, comprises of 14 joints, i.e.,
head, neck, hips, knees, ankles, shoulders, elbows, and wrists as described in Figure 2a.

For the error measurement, we follow the same protocol as in [8,36], i.e., the nor-
malized reconstruction error as well as the reconstruction rate. In case of the normalized
reconstruction error, the error is computed at every joint by measuring the Euclidian distance
between 3D locations of each joint of the reconstructed human pose and the ground-truth
human pose. We then select the joint error that shows the highest reconstruction error
compared to all 18 joints. It is further normalized by taking the fraction multiplication with
the backbone length (the distance between the chest joint and the root joint). For multiple
2D input query images, we compute an average of the reconstruction error for all input
query images and name it as average reconstruction error, shortly recon-err. In case of recon-
struction rate, it is defined as the percentage of the test input query images with lowest
reconstruction error subject to some specified threshold, i.e., 0.3 in the line of [8,36]. We
Procrustes fit the 3D reconstructed human pose with the ground-truth 3D human pose
before computing the final reconstruction error as in [8,35,36]. We deploy these error mea-
surements when evaluating our approach on CMU [16] and HDM05 [17] MoCap datasets.
For evaluation on Human3.6M [18] MoCap dataset, we employ the 3D pose error as defined
in [10,46,47], where the predicted pose is aligned first to the ground-truth pose by the rigid
transformation, and then the mean 3D Euclidean joint error is computed.
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4.1. Datasets

We first discuss the datasets we deploy in this paper to conduct plenty of experiments
to evaluate the developed system. We elaborate on the MoCap datasets that we use to infer
the missing 3D information and the different kinds of testing input datasets that we use for
evaluation purposes.

4.1.1. Mocap Datasets

We employ three popular and challenging MoCap datasets, named CMU [16],
HDM05 [17], and Human3.6M [18] MoCap dataset, all are available publicly. In case
of CMU dataset, the Vicon system with 12 infrared MX-40 cameras is used in order to
capture the human motions at a 120 Hz sampling rate [16]. It is recorded by 144 actors
performing different types of motions, including gymnastics and other interesting physical
activities. We work with roughly 1/3 of the CMU MoCap dataset because of the limited
memory capacity.

The second dataset used in this research paper is HDM05 [17] that has about 2337 num-
ber of motions with 130 categories performed by five different performing actors. The mo-
tions are recorded using a Vicon MX system with 120 Hz sampling rate, consisting of
12 high-resolution cameras.

The third MoCap dataset, Human3.6M [18], is also a large-scale indoor MoCap dataset
that provides 3D annotations. It contains 3.6M 3D human poses with their corresponding
images, performed by 11 professional actors. In this dataset, we deal with 15 classes, i.e.,
direction (dir.), discussion (disc.), eating (eat), greeting (greet), talking on phone (ph.),
pose, making purchase (pur.), sit, sit down (sitD.), smoking (smoke), taking photo (photo),
waiting (wait), walking (walk), walking dog (walkD.) and walking together (walkT.).

We first down-sample both CMU and HDM05 MoCap datasets from sampling rate
120 Hz to 30 Hz. Consequently, we obtain roughly 360K number of poses for CMU MoCap
dataset and 380K number of poses for HDM05 MoCap dataset. We further categories
these datasets into four different experimental protocols and scenarios such asMDS cmu,
MDS cmu,MDShdm andMDSh3.6m.

MDS cmu

It consists of all 3D human poses of CMU Mocap Dataset, excluding only those human
poses used to create a 2D synthetic input testing dataset. Moreover, we also discard
absolutely all motions from which we make even a single 2D synthetic input query image.
In this way, the dataset MDS cmu becomes entirely free of overlaps with any 2D input
query image.

MDS cmu

It also comprises all 3D human poses of the CMU Mocap dataset; however, we
eliminate all those motions completely, from which we create even a single 2D synthetic
input query image. Additionally, we also discard all motion sequences in which the same
performing actor appears as in the 2D synthetic input query image. Therefore, this dataset
is free of the motion sequences and the performing actors relevant to the input query pose.

MDShdm

This dataset is developed using HDM05 motion capture sequences. It contains all the
poses, i.e., 380K number of poses, as we generate no 2D synthetic input query image using
this MoCap dataset. In other words, this MoCap dataset is absolutely free from any input
query pose.

MDSh3.6m

On the Human3.6M MoCap dataset [18], we follow up the same protocol as in [10,47–49]
and use six different subjects, i.e., S1, S5, S6, S7, S8, and S9, for developing the training
dataset. In the line of [10,47], we discard every other pose if the average Euclidean distance
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between two consecutive poses is less than 1.5 mm. As a result, the Human3.6M MoCap
dataset is reduced to 380K 3D human poses. For testing, we employ every 64th frame of
the subject S11.

4.1.2. Input Datasets

We evaluate our proposed system thoroughly on three different types of input query dataset.

Synthetic 2D Dataset

For quantitative analysis of the proposed framework, we follow the same protocol
as mentioned in [8,35,36] and create synthetic 2D input testing datasets from the CMU
MoCap dataset using a camera matrix with random parameters. We also select only those
action classes, as in [8,36], i.e., walking, running, boxing, jumping, and climbing. We refer
to synthetic 2D input testing datasets as SDS1, which contains 43,809 numbers of 2D
synthetic input query poses with 25 subjects as reported in Table 1. It is the same dataset
as mentioned in [8], and it is large enough compared to the dataset [36], which consists of
29,336 synthetic poses with 23 subjects.

Table 1. The synthetic 2D input testing dataset SDS1 created from the CMU motion files using the camera matrix with
random camera parameters.

Synthetic 2D Input Testing Dataset (SDS1).
Components Walking Running Jumping Boxing Climbing Total

No. of human poses 13,509 2970 5913 9128 12,289 43,809
No. of subjects 8 8 4 4 1 25

We also generate a mini input testing dataset SDS2 that is the subset of the input
testing dataset SDS1. We randomly select 3500 synthetic 2D input images from almost all
action categories. We develop this test dataset SDS2 just for tuning the parameters.

PARSE Dataset

For qualitative evaluation, we deploy here in this paper PARSE dataset [19,60], which
consists of in-the-wild internet real sports images.

Hand-Drawn Sketches Dataset

We also assess our proposed framework qualitatively on 2D hand-drawn human
poses. We created 2D sketches for human poses by hand. It is very challenging to infer
plausible 3D poses from 2D hand-drawn sketches since most of the drawings do not meet
the kinematic and anthropometric constraints inherent in human beings’ natural poses.
The results section will show that our proposed system performs very well in such type of
most challenging input queries.

4.2. Parameters

We perform several preliminary experiments to tune and adjust the values for the
parameters. We elaborate on these experiments for parameter tuning below.

4.2.1. Principal Components

We apply PCA in order to compute the linear local model in a linear subspace with
lower dimensionality. The energy minimization is much faster in a restricted lower-
dimensional space. Thus, it is worth the overhead of computing the PCA for each pose.
To handle the trade off between potentially lower accuracy introduced by the PCA and
faster optimization times, we dynamically decide for the number of principal components
(eigenposes). We calculate the captured variance of the retrieved similar poses for every
given 2D input query pose separately. As a result, the number of eigenposes varies for
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every 2D input query pose. We select the lowest number of eigenposes, such that the
accumulative variance is larger than 99%. Based on this criterion, we observe that the
number of eigenposes selected is within the range of 14 to 20. We show an example
in Figure 4a, where the accumulative variance and the average reconstruction error are
computed for changing numbers of principal components. We can see that for this specific
case, the average reconstruction error converges for more than 18 eigenposes while the
accumulative variance converges, too. Figure 4b shows the reconstruction error and the
computation time for the varying number of principal components. Hence, the advantage
of the local dimensionality reduction in terms of computations times becomes more clear.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

6 12 18 24 30 36 42 48 54 60
Principal Components

A
c
c
u

m
u

la
ti

v
e
 V

a
ri

a
n

c
e
 (

%
)

100

98

96

94

92

90

88

86

84

82

A
v
e
ra

g
e

R
e
c
o

n
s
tr

u
c
ti

o
n

E
rr

o
r

Average Reconstruction Error

Accumulative Variance (%)

0
0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

6 12 18 24 30 36 42 48 54 60
Principal Components

R
e

c
o

n
s

tr
u

c
ti

o
n

 T
im

e
 (

s
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

A
v

e
ra

g
e

 R
e
c

o
n

s
tr

u
c

ti
o

n
 E

rr
o

rAverage Reconstruction Error

Reconstruction Time (s)

0
0

(a) (b)

Figure 4. (a) Accumulative variance (%) as well as average reconstruction error for the dynamic selec-
tion of the number of principal components. (b) Reconstruction time and the average reconstruction
error for different number of principal components.

4.2.2. Nearest Neighbors

We conduct experiments to fix some appropriate value for K, i.e., the total number of
nearest neighbors. We perform this experiment by fixing the values for K as, 25 = 32,
26 = 64, 27 = 128, 28 = 256, and 29 = 512. Then, we evaluate the system’s performance
at different threshold levels, like, {0.1, 0.2, 0.3, . . . , 0.9}. From the results as reported in
Figure 5, we have found that the proposed system executes its best results comparatively at
almost all threshold levels when the value for K = 256. We have performed this experiment
on the input testing dataset SDS2. We fix the value of K = 256 for all other experiments to
evaluate our proposed system.
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Figure 5. Comparing different values of K, i.e., the numbers of nearest neighbors needed to recon-
struct 3D human pose. We conduct this experiment on the input testing dataset SDS2 and use
average reconstruction error (recon-err) with varying threshold values.



Sensors 2021, 21, 2415 15 of 28

4.2.3. Joint Weights

As mentioned earlier in Section 3.5, we assign weight to each skeleton’s joint according
to the degree-of-freedoms. We experiment to see the overall influence of the joint weights
on our proposed architecture. We compute recon-rate with and without joint weights at
two different threshold levels, i.e., 0.3 and 0.26. The results mentioned in Figure 6 show
that the usage of the joint weights increases accuracy significantly.
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Figure 6. The overall influence of the joint weights w. We carry out this experiment on input testing
dataset SDS2, and the error measurement, recon-rate with thresholds 0.3 and 0.26, is used.

4.2.4. Energy Weights

We first evaluate the impact of the energies Ea and Eb (Section 3.4) by allocating
different weights to them, ranging from 0.0 to 0.9. The results reported in Figure 7 show
that for the energy weights a = 0.45 and b = 0.55, we obtain the best reconstruction results
(recon-rate), which is an evident that the energies Ea and Eb with those weights play a vital
role in the estimation of the accurate camera parameters.
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Figure 7. Impact of the weighted energy terms, Ea and Eb is reported in (a), and (b) respectively.

We also perform experiments to examine the influence of the energy terms Epa, Epp,
and Ec, which we employ in the reconstruction process (Section 3.5). We assign different
weights to these energy terms starting from 0 to some specific value. While investigat-
ing the weights for an energy term, we keep the weights for other energy terms fixed
to some particular values. We have concluded from the results presented in Figure 8
that at the energy weights such as ωpa = 0.8, ωpp = 1.4, and ωc = 1.8, these energy
terms contribute substantially, and the overall performance of the proposed methodology
increases significantly.

It is also evident from Table 3 that the energy minimization function with multi-
ple energy terms and the dynamic number of principal components improve accuracy
convincingly as compared to the PCA-based method with fixed principal components,
PC = 18.
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Figure 8. Impact of the weighted energy terms, Epa, Epp, and Ec, is reported in (a), (b), and (c), respectively.

4.2.5. Virtual Cameras

We have generated several virtual cameras through which the MoCap dataset is
projected onto the image plane to deal with 2D-3D cross-domain similarity and retrieval
issues (see Section 3.3). We experiment to see the overall impact of the virtual cameras on
the proposed framework’s efficiency in two steps,

• First, we create virtual cameras just by fixing the elevation (elv) angles (0–15–90◦)
and varying the azimuth (azm) angles (0–345◦ with 15◦, 25◦, 35◦, 45◦, and 60◦ step
sizes). As a result, we create several virtual cameras as, {(24× 7), (15× 7), (11×
7), (8× 7), (6× 7)} with azimuth and elevation incremental step sizes {(azm(15◦),
elv(15◦)), (azm(25◦), elv(15◦)), (azm(35◦), elv(15◦)), (azm(45◦), elv(15◦)), (azm(60◦),
elv(15◦))} respectively.

• Second, we generate virtual cameras by fixing the azimuth (azm) angles (0–15–345◦)
and by varying the elevation (elv) angles (0–90◦ with 15◦, 30◦, and 45◦ step sizes). Con-
sequently, several virtual cameras are created as, {(24× 7), (24× 4), (24× 3), (8× 7)}
with azimuth and elevation incremental step sizes {(azm(15◦), elv(15◦)),
(azm(15◦), elv(30◦)), (azm(15◦), elv(45◦))} respectively.

The results in Figure 9 elaborate that when the step sizes for the azimuth angles (azm)
increase, the error (recon-err) increases accordingly. The same response is noticed in case
of the elevation angles. More precisely, more virtual cameras are deployed, the average
reconstruction error decreases correspondingly. We use virtual cameras equal to (24× 7)
for the rest of the experiments.
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Figure 9. The influence of the number of virtual cameras. The filled colored bars rep-
resent the average reconstruction error based on the sampling of the azimuth angles, i.e.,
{(azm(15◦), elv(15◦)), (azm(25◦), elv(15◦)), (azm(35◦), elv(15◦)), (azm(45◦), elv(15◦)), (azm(60◦),
elv(15◦))}, which are equivalent to {(24× 7), (15× 7), (11× 7), (8× 7), (6× 7)} number of virtual cameras
respectively. On the other hand, the unfilled colored bars show the average reconstruction error based on the
sampling of the elevation angles, i.e., {(azm(15◦), elv(15◦)), (azm(15◦), elv(30◦)), (azm(15◦), elv(45◦))},
which generate {(24× 7), (24× 4), (24× 3), (8× 7)} number of virtual cameras respectively.
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4.3. Search and Retrieval

For searching and retrieval of Knn from the developed knowledge-base, we define a
variety of feature sets through different combinations of skeleton joints as described in
Figure 2b. We perform various types of experiments to analyze all these feature sets based
on nearest neighbors retrieval, systems’s accuracy, memory consumption, and the time
complexity. For all these experiments, we deploy input testing dataset SDS2. We elaborate
on these experiments and discuss the results one by one as under.

In the first experiment, we evaluate all these feature sets in terms of similarity search
and retrieval, i.e., the retrieval of Knearest neighbors when the value of K is fixed to be
256. For this experiment, we randomly select 1500 input 2D poses from the input testing
dataset SDS2 and are provided to the system as query. For 2D input query poses, we
search for and retrieve K nearest neighbors using all the feature sets F im

5 , F im
7 , F im

9 , F im
11 ,

and F im
14 separately one by one. As a result, we retrieve poses equal to 256× 1500 for

every feature set. We then compare these feature sets in terms of the retrieved nearest
neighbors. More precisely, we count only those nearest neighbors that yield low recon-err at
some specific threshold. Figure 10 demonstrate that the feature set, F im

11 , retrieves a very
good number of nearest neighbors as compared to all other feature sets at almost all
threshold values.

Figure 10. A comparison between different feature sets, i.e., F im
5 , F im

7 , F im
9 , F im

11 , and F im
14 , in terms of

robust nearest neighbors retrieval—the similarity measure. We fix the Knn equal to 256 and experiment
on 1500 synthetic 2D poses, selected randomly. Consequently, it becomes 256× 1500 number of target
poses. For this experiment, we use average reconstruction error, recon-err, with various thresholds.

In the second experiment, we analyze all feature sets’ performance based on the
reconstruction of 3D articulated poses for different types of action poses. Moreover, we
also consider the average results of all these action categories. We conclude from the results
shown in Figure 11 that both feature sets, F im

11 and F im
14 , show their performance very well

comparatively not only for all action categories but also on an average taken from the
results of all the action classes.

In the third experiment, we measure the developed feature sets’ performance in terms
of time consumption as well as memory allocation. The results are shown in Table 2, which
illustrates that the feature set F im

5 takes less time than all other feature sets in the process of
retrieval and reconstruction. However, the difference in time is not relevant as the energy
minimization is the time-consuming factor. Furthermore, the time spent on constructing
the knowledge-base and the kd-tree is less critical, since both are the pre-processing steps
and are performed just once to retrieve the nearest neighbors. As expected, the feature sets
containing more joints require more memory allocation comparatively in terms of memory
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allocation. For example, the feature set F im
14 requires more memory in comparison to other

feature sets.

Figure 11. A comparison between feature sets, i.e., F im
5 , F im

7 , F im
9 , F im

11 , and F im
14 , based on recon-err,

for all five action classes and the average results obtained by computing the average of all actions.

Table 2. Computational efficiency (sec.) for all feature sets, i.e., F im
5 , F im

7 , F im
9 , F im

11 , and F im
14 con-

cerning time spent on construction of the knowledge-base, the kd-tree, and on the process of retrieval
and reconstruction. This experiment is conducted on 360K CMU dataset poses, and 24× 7 number of
virtual cameras are deployed. Note that both (a) and (b) are the pre-processing steps.

Computational Efficiency in s for Feature Sets.
Components F im

5 F im
7 F im

9 F im
11 F im

14

(a) The development of the knowledge-base 30.55 42.12 54.78 67.86 77.63

(b) The construction of kd-tree 97.60 118.12 130.26 144.49 197.73

(c) The process of retrieval and reconstruction 0.53 0.56 0.62 0.67 0.96

In the end, we conclude from these experiments that the feature set F im
11 is the best

choice on account of similarity retrieval, reconstruction accuracy, time consumption, and
memory allocation. It is in contrast to [43,59], where the authors claim that the feature sets
F im

5 (head and four end effectors) is the best choice for the similarity retrieval. No doubt
that F im

5 has less time complexity and needs less memory allocation, but the system’s
accuracy drops substantially, as apparent in results shown in Figures 10 and 11. The choice
of an appropriate feature set is a trade-off between the system’s accuracy and time-memory
complexities. In the end, we select and recommend the feature set, F im

11 , that yields not
only more system’s accuracy but also very appropriate with respect to time and memory
complexities. We implement these experiments using a single-threaded MATLAB, 64-bit
operating system (Window 10 pro), 32 GB RAM, and a Core 12 @ 3.20 GHz processor.

4.4. Quantitative Evaluation

For quantitative analysis of our proposed approach, we employ the testing input
dataset SDS1, which comprises 43,809 synthetic 2D poses as reported in Table 1. For that
purpose, we design and conduct a pool of experiments, which we illustrate as follows.
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4.4.1. Evaluation onMDS cmu

In the first experiment, we deploy dataset MDS cmu as knowledge prior. The re-
sults reported in Table 3a illustrate that our approach convincingly outperforms the
PCA-based method (with fixed principal components, PC = 18) and other state-of-the-art
approaches [8,35,36], for almost all five action categories on both evaluation metrics, i.e.,
recon-err as well as recon-rate.

Table 3. A quantitative evaluation of our proposed approach on testing input dataset SDS1. (a) and (b) reports the
quantitative evaluation results on MoCap datasets,MDS cmu andMDS cmu, respectively, while (c) shows results when the
MoCap dataset isMDShdm. The best results are shown in bold.

Quantitative Evaluation on MDScmu, MDScmu, and MDShdm.
Methods Error Metrics Walking Running Jumping Boxing Climbing Average

(a) CMU MoCap dataset is used,MDS cmu

PCA (PC-18)
recon-err 0.546 0.573 0.454 0.694 0.651 0.583
recon-rate 21.6% 18.0% 22.6% 8.1% 17.1% 17.48%

[35]
recon-err 0.446 0.453 0.374 0.584 0.533 0.478
recon-rate 29.6% 23.0% 31.6% 10.7% 20.1% 23.0%

[36]

recon-err(λ = 0.0) 0.360 0.417 0.343 0.579 0.560 0.452
recon-rate(λ = 0.0) 53.4% 29.8% 34.12% 13.3% 21.7% 30.46%
recon-err(λ = 0.1) 0.300 0.390 0.322 0.530 0.528 0.414
recon-rate(λ = 0.1) 71.2% 35.1% 39.5% 17.0% 27.9% 38.14%
recon-err(λ = 0.2) 0.260 0.385 0.316 0.535 0.522 0.404
recon-rate(λ = 0.2) 73.9% 38.2% 41.6% 16.4% 27.0% 39.42%
recon-err(λ = 0.3) 0.272 0.432 0.321 0.534 0.526 0.417
recon-rate(λ = 0.3) 70.4% 34.0% 40.2% 16.8% 28.1% 37.9%

[8]
recon-err 0.195 0.286 0.196 0.396 0.409 0.296
recon-rate 84.7% 62.1% 84.5% 45.1% 40.6% 63.4%

Our App.
recon-err 0.183 0.253 0.179 0.365 0.391 0.274
recon-rate 85.8% 64.5% 85.8% 49.2% 41.9% 65.44%

(b) CMU MoCap dataset is used,MDS cmu

Our App.
recon-err 0.207 0.331 0.227 0.413 0.529 0.341
recon-rate 82.9% 51.7% 77.8% 39.1% 22.1% 54.72%

(c) HDM05 MoCap dataset is used,MDShdm

[8]
recon-err 0.317 0.406 0.237 0.554 0.595 0.422
recon-rate 54.9% 29.3% 85.4% 6.4% 17.6% 38.7%

Our App.
recon-err 0.301 0.391 0.213 0.529 0.568 0.4
recon-rate 56.1% 30.9% 86.9% 8.73% 18.9% 40.31%

4.4.2. Evaluation onMDS cmu

In the second experiment, we use datasetMDS cmu as a knowledge prior. Our pro-
posed approach performs best for all types of action classes except for the climbing action,
as shown in Table 3b. In case of climbing motion sequences, the error increases because
MDS cmu includes only very few examples of climbing motions.
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4.4.3. Evaluation onMDShdm

In the third experiment, the HDM05 MoCap dataset is used to get prior knowl-
edge from the MoCap dataset. In this experimental setup, the query input is from the
CMU dataset, SDS1, and the MoCap dataset is HDM05,MDShdm. The results reported
in Table 3c show that the error increases because of the skeleton discrepancies between
HDM05 and CMU MoCap datasets. Moreover, the error for boxing action is relatively high
since the HDM05 dataset does not have boxing motion sequences but contains very few
punching motion examples. Even having such types of challenges, our proposed system
still executes very competitive results.

In terms of time, our proposed approach is more efficient as it takes only 0.668 s.
per 2D input image for the process of retrieval and reconstruction with the feature set
F im

11 as mentioned in Table 2. In comparison, the other state-of-the-art method [35] needs
5 s/image to infer.

4.4.4. Evaluation onMDSh3.6m

For evaluation on the Human3.6M MoCap dataset [18], we follow the same protocol
as in [10,47–49] and deploy 3D pose error [10,46,47] for the error measurement. The results
reported in Table 4 show that our proposed pipeline executes outstanding results compared
to other state-of-the-art approaches. Our proposed method outperforms almost all other
state-of-the-art techniques on most of the classes as well as on average results. A very few
classes like in sit, sitDown, and walkDog, where other state-of-the-art techniques show less
reconstruction error than our method, our approach still produces very competitive results,
as shown in Table 4.

Table 4. The average 3D reconstruction error (mm) on the Human3.6M MoCap dataset with 2D ground-truth for subject
S11. The best results are shown in bold.

Quantitative Evaluation on MDSh3.6m.
Methods Dir. Disc. Eat Greet Ph. Pose Pur. Sit SitD. Smoke Photo Wait Walk WalkD. WalkT. Mean

[47] 51.9 45.3 62.4 55.7 49.2 56.0 46.4 56.3 76.6 58.8 79.1 58.9 35.6 63.4 46.3 56.1
[10] 60.0 54.7 71.6 67.5 63.8 61.9 55.7 73.9 110.8 78.9 96.9 67.9 47.5 89.3 53.4 70.5
[49] 53.3 46.8 58.6 61.2 56.0 58.1 48.9 55.6 73.4 60.3 76.1 62.2 35.8 61.9 51.1 57.5
[48] 59.1 63.3 70.6 65.1 61.2 73.2 83.7 84.9 72.7 84.3 68.4 81.9 57.5 75.1 49.6 70.0

Our App. 50.5 42.7 60.7 54.9 48.1 54.1 44.8 55.7 73.6 57.1 77.6 57.3 33.5 62.2 43.8 54.4

4.4.5. Evaluation on Noisy Input Data

In real life, the estimated 2D pose and the joint locations from images are often inaccu-
rate and noisy. We also analyze the proposed approach with noisy input data as well. In the
line of [36], we generate noisy query input with Gaussian white noise with different levels of
standard deviation σ like 0.0 (no noise), 0.1, 0.2, 0.3, and 0.4. Furthermore, we normalize the
noise before adding it up into synthetic input query 2D poses. Our proposed methodology
shows more resistance to noise comparatively, as reported in Table 5. It is further evident
from Figure 12, where our proposed system executes very acceptable qualitative results
even when the input query 2D pose consists of erroneous 2D joint locations. Moreover, we
evaluate our method on hand-drawn sketches, which contains a wildly inaccurate skeleton
that does not hold even anthropometric regularity. On hand-drawn sketches even, our
system produces very plausible results, as shown in Figure 14.



Sensors 2021, 21, 2415 21 of 28

Table 5. Quantitative evaluation of the proposed architecture on a noisy input data with different
levels of standard deviations σ. The best results are shown in bold.

Quantitative Evaluation on Noisy Input Data.
Methods Error Metrics σ(0.0) σ(0.1) σ(0.2) σ(0.3) σ(0.4)

[36]
recon-err 0.414 0.449 0.485 0.561 0.630
recon-rate 32.6% 28.7% 24.4% 18.1% 13.1%

[35]
recon-err 0.466 0.497 0.558 0.634 0.704
recon-rate 23.9% 20.5% 13.8% 9.3% 4.8%

Our App.
recon-err 0.271 0.326 0.431 0.524 0.617
recon-rate 67.3% 52.9% 38.1% 34.9% 33.8%

Figure 12. Qualitative evaluation of the proposed architecture on noisy input data—A few 2D input
query images with joint outliers (first row) are given to the system while the final 3D reconstructed
poses are shown in second row and third row at two different view angles.

4.5. Qualitative Evaluation

For qualitative evaluation of our proposed methodology, we conduct several experi-
ments on the in-the-wild real images and on 2D hand-drawn human poses, which we create
manually. We discuss the experiments and the results one by one below.

4.5.1. Real Images of Parse Dataset

We deploy the PARSE dataset [19] for qualitative performance evaluation of our
proposed system on the in-the-wild real images, as described earlier in Section 4.1. In order
to estimate 2D joint locations from the given in-the-wild real image, we utilize an off-the-
shelf 2D part-detector method [38] that detects an overall 2D skeleton from the given image,
while other approaches [35,36] label the 2D joint positions manually. In our case, the 2D
part-detector approach [38] yields a more noisy 2D skeleton from in-the-wild real images
comparatively. A few qualitative reconstruction results of our proposed system are shown
in Figure 13. These results demonstrate that even with noisy 2D estimated joint positions,
our methodology produces very plausible 3D reconstruction poses.
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Figure 13. Qualitative results on the in-the-wild internet real images taken from PARSE dataset [19]. The first rows show the input
in-the-wild real images with 2D joint annotations estimated through [38]. The second and the third rows represent the relevant 3D
reconstructed human poses at two different view angles.

4.5.2. Hand-Drawn Sketches

We also make a qualitative evaluation of our approach on 2D hand-drawn sketches
of human poses, which we draw manually for different action classes. The robust and
plausible reconstruction of 3D articulated human poses from just only the 2D hand-drawn
poses may be considered as the most challenging problem based on the following reasons:
(i) the lack of the anthropometric and kinematic constraint in the skeleton of the 2D hand-
drawn human poses; (ii) the variations in the limbs’ lengths; (iii) the unnatural movements
of the body parts etc. We first annotate the 2D joint locations manually of the given 2D hand-
drawn pose and then input it to the developed system as a query. The results presented
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in Figure 14 explore that our proposed method yields very acceptable 3D reconstructed
human poses even on such an ambiguous and noisy input.

Figure 14. Qualitative results on the hand-drawn sketches created manually. The first row shows the input hand-drawn sketches. The
second and the third rows are the relevant 3D reconstructed human poses at two different view angles.

4.6. Controlled Experiments

We conduct a few controlled experiments to see the impact of different parameters
on the proposed architecture. We elaborate on all these experiments with their results
as follows.

4.6.1. Camera Viewpoints

The camera viewpoints (azimuth and elevation angles) of the input 2D pose pro-
foundly impact the proposed retrieval and reconstruction process. We investigate the
impact of camera viewpoints for all possible angles—0◦ to 360◦ for azimuth angle and 0◦

to 180◦ for elevation angle—at which the 2D input pose may be captured. For that purpose,
we conduct a few experiments on 100 2D synthetic poses for each action category that we
select randomly from the input query 2D dataset SDS1.

In the first scenario, we see the impact of the azimuth angles. We generate 2D syn-
thetic poses for all five action classes by utilizing a weak perspective camera model with
elevation angle at 30◦ and azimuth angles ranging from 0–360◦. The results reported
in Figure 15a reveal that the reconstruction error is minimal at the side-view—the angle
between 45–105◦ and 255–315◦—for walking, running, and boxing categories of actions
while for jumping and climbing actions, the reconstruction error is minimum at 100–150◦

as well as at 240–270◦. At the side-view, the walking, running, and boxing action poses are
more prominent than any other view. Generally, our approach produces good results for
all view directions, either it is a profile view or a frontal view.
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Figure 15. Impact of the camera view angles of the 2D input query pose. The average reconstruction error recon-err is computed when
the camera view angles of the 2D input query pose are: (a) the elevation angle = 30◦ while the azimuth angle changes from 0–360◦;
(b) the azimuth angle = 30◦ while the elevation angle changes from 0–180◦. For this experiment, we select 100 synthetic 2D input poses
randomly for each action class, taken from the input testing dataset SDS1.

In the second scenario of elevation angles, we generate 2D synthetic poses for all action
categories through a weak perspective camera model with azimuth angle at 30◦ and the
elevation angles spanning from 0–180◦. The results presented in Figure 15b demonstrate
that the reconstruction error increases at the head-mounted camera views, i.e., at 70◦ to
110◦ comparatively. At that specific viewpoints, most of the 2D pose joints overlap with
each other, and as a result, it becomes indistinctive, which ultimately leads towards the
inappropriate Knn retrieval and finally yields into higher average reconstruction error,
recon-err.

4.6.2. Joints’ Sensitivity

We also check and measure every joint’s sensitivity in our skeleton model except the
root joint. For that purpose, we evaluate our proposed methodology joint-wise in terms
of reconstruction error for all activity classes. The results reported in Figure 16 illustrate
that the end effectors, i.e., wrist joints, ankle joints, and the feet joints, are more sensitive
and erroneous for all action categories than all other skeleton joints. It is because these
joints are more capable of moving all-around freely. The joints like shoulder joints, neck
joints, and hip joints are less sensitive and erroneous as expected since these joints have
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limited movement capacity. In conclusion, we found that the joints’ sensitivity is directly
proportional to the joints’ movement in all directions. That’s why the end effectors seem to
be comparatively more sensitive joints.
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Figure 16. The sensitivity measure for each individual joint involved in the skeleton for all five action
classes. We compute Euclidean distance for each joint and is color-coded.

5. Conclusions

This paper proposes a novel and efficient architecture for 3D human pose search and
retrieval that leads to 3D human pose estimation from a single static 2D image that is either
a synthetic image, an annotated 2D image, an in-the-wild real image, or a hand-drawn
sketch. We devise a set of feature sets through different coalitions of subsets of skeleton
joints for fast search and retrieval of Knn from the MoCap dataset. We evaluate these
feature sets based on similarity retrieval, the average reconstruction error, computational
time complexity, and memory consumption. We exploit further these retrieved Knn to infer
the ultimate 3D human pose. We also benefit from these retrieved Knn to predict the weak
perspective camera parameters. For 3D pose reconstruction, we formulate an objective
function that consists of multiple energy terms. We evaluate our proposed approach
quantitatively on 43,809 synthetic 2D static images and the annotated 2D images from the
Human3.6M dataset. For qualitative analysis, we deploy a variety of in-the-wild internet
real images and 2D hand-drawn human poses. With a pool of experiments conducted on
such a large heterogeneous 2D input testing dataset, we have found that our developed
system convincingly outperforms other state-of-the-art methods on CMU, HDM05, and
Human3.6M MoCap datasets. Our proposed approach achieves better performance than
compared approaches even in case of 2D noisy inputs. Moreover, our system is robust
enough to yield very plausible 3D reconstruction results with hand-drawn sketches. Our
system takes roughly 0.668 s per 2D input pose for retrieval and the final 3D reconstruction.
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