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Abstract: In this paper we show that it is possible to reconstruct whole body motions from the data
taken by as few as 1, 2, 4 inertial sensors, if a semantic pre-classification of the motion is available,
and motion data bases can be used to synthesize missing degrees of freedom. We demonstrate
some examples of reconstructed motions and compare them with a video of the take, and we use
data of optical motion captures for numerical comparisons.

Although our work is mainly inspired by the wish to create easy-to-use and cheap motion capture
systems for everyday settings, such a motion capture system is also an easy-to-use tracking system
of whole body motions. Moreover, the underlying synthesis of motion out of low-dimensional
control signals opens new ways for the control of avatars.
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1 Introduction

Traditionally there is a distinction between tracking of certain parts of the human body—e.g. head,
overall body position, one or two hands or the feet—and motion capturing, which is commonly
understood as capturing whole body motions [Bis84, HW02, Val02, WF02, Fox05, MJKM04,
HBS07, ZH07, VAV+07, RNd+07]. However, if rather sparse sets of markers resp. sensors can
be used to capture resp. reconstruct human motion then there is a smooth transition between these
two domains. Although the usability of a system for users greatly improves if only few markers or
sensors have to be used to reconstruct their whole body motions the question of capturing, tracking
resp. reconstructing human motion from few sensors has been addressed quite rarely. Chai and
Hodgins [CH05] use the motions of a motion data base to generate realistically looking motions
on the basis of video data of two cameras. They use only few markers (about 6–9) and track their
3D-positions by computer vision techniques, as well as the orientation of the body root. Searching
for similar motions to the current frame they use principal component analysis to come up with a
linear low-dimensional approximation of a motion, in which they synthesize the “most probable”
next frame of the motion using information from the sensors, and motion priors generated from
the motion data base.

As has already been noted by Chai and Hodgins the method is not only suitable for sparse sets
of optical marker, but also for other low dimensional control signals, e.g. ones from acceleration
sensors. However we do not know from realizations of such extensions. Liu et al. [LZWM06]
use local linear models directly on sets of markers. For transitions between the local linear models
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they use random forest. In [LM06] they generalize the method to cases, in which several markers
are not visible during a motion capture session.

Our contribution. In this paper we show that it is possible to reconstruct whole body motions
from the data taken by as few as 1, 2, 4 inertial sensors for several classes of motions, if semantic
pre-classifications of motions are available and motion data bases can be used to synthesize missing
degrees of freedom. In contrast to previous approaches, which rely on linear models of the motions,
we use multi-linear models and use an optimization approach to synthesize the full motions. We
also extend the technique suggested in [CH05] to acceleration-based sensor signals, and compare
the results of our approach to the outcome of this extension.

When comparing our reconstructed motions with ground-truth motions we realized that the es-
tablished approaches to compute a distance between motions on the average error of local joint
orientations can fail: Being purely pose-based the distance measure might fail to detect artifacts
like directional flips or jitter (i.e. the distance between the original motion and the reconstructed
motion is small, although the latter exhibits these artifacts). So we present a novel practical mea-
sure to compare the similarities of motions based on quantities represented in a global coordinate
frame. Assuming a fixed skeleton topology our goal is a universal measure that both matches the
human perception and is simple enough to be implemented in time critical environments.

2 Preliminaries

In this section we recall the use of multi-linear models for motion data representations [Vas02,
RCO05, MK06, KTW07, KTMW08] that will be central to our approach.

2.1 Mathematical background

A tensor Θ of order N ∈ N and type (d1, d2, . . . , dN) ∈ NN over the real number R is defined to
be an element in Rd1×d2×...×dN .

Intuitively, the tensor Θ represents d =
∏N

i=1 di real numbers in a multidimensional array based
on N indices. These indices are also referred to as the modes of the tensor Θ. A tensor Θ can
be transformed by an N -mode singular value decomposition (N -mode SVD). The result of the
decomposition is a core tensor Φ of the same size as Θ and associated orthonormal matrices
U1, U2, . . . , UN . The matrices Uk are elements in Rdk×dk where k ∈ {1, 2, . . . , N}.

Mathematically this decomposition can be expressed in the following way:

Θ = Φ×1 U1 ×2 U2 ×3 . . .×N UN . (1)

This product is defined recursively, where the mode-k-multiplication ×k with Uk replaces each
mode-k-vector v of Φ ×1 U1 ×2 U2 ×3 . . . ×k−1 Uk−1 for k > 1 (and Φ for k = 1) by the vector
Ukv. A more detailed description of multi-linear algebra is given in [VBPP05].



2.2 Motion tensors

In our case the tensors are filled with motion data similar to [KTW07, KTMW08]. A frame is
defined by the position of its root node p and quaternions (q1 . . . q31) describing the rotation of the
skeleton segments. A motion is defined to be a sequence of frames. We build two motion tensors,
one for the root positions and one for the rotational data, since the variance of these types of data
is quite different: the values of unit quaternions are in the interval [−1, 1] while the translational
offset of the root position is not limited at all. The rotational data are stored in so called technical
modes, that correspond to the structure of the underlying motion capture data, and so called natural
modes, which correspond to properties of motions that typically appear in the context of a motion
capture session. We call the technical modes DOF mode, Joint mode and Frame mode and the
natural modes we used split up to Style mode, Actors mode and Repetition mode. A typical tensor
with rotation data Θq has a dimension of N = 6 and size of d = 4 × 31 × 70 × 3 × 5 × 3. Since
only one node is considered in a tensor Θp storing the translation of the root node, this tensor does
not need a Joint mode and its dimension reduces to N = 5. Identifying the root node’s degrees of
freedom with the axes in 3D space the size of the DOF mode in this case becomes 3.

2.3 Motion synthesis

As described in section 2.1 a data tensor Θ can be decomposed into a core tensor Φ and related
matrices U1, . . . , UN . In this composition each matrix Uk corresponds to a specific mode and each
row in a matrix Uk corresponds to a specific entry of this mode.

Instead of reconstructing the complete data tensor Θ (by mode-multiplying Φ with all matrices Uk)
this representation also allows to directly reconstruct a single motion contained in the data tensor.
This is done by first multiplying Φ with each matrix corresponding to a technical mode, and then
multiplying the result with just one row of each matrix corresponding to a natural mode. Let t be
the number of technical modes, n the number of natural modes and let uik be the i-th row of matrix
Uk. Reconstruction of a motion m then can be expressed in the following way:

m = Φ×1 U1 . . .×t Ut ×t+1 u
i1
t+1 . . .×t+n uint+n. (2)

While using a single row of each matrix Ut+1, . . . , Ut+n always results in one of the original mo-
tions it is also possible to synthesize a new motion mnew by using linear combinations of matrix
rows. This can be expressed mathematically in this way:

mnew = Φ×1 U1...×t Ut ×t+1 λt+1Ut+1...×t+n λt+nUt+n, (3)

with

λkUk =
(
λ1
k . . . λ

dk
k

) u1
k
...
udk
k

 =

dk∑
i=1

λik u
i
k =: xk. (4)

With this model in hand we are able to formulate an optimization problem based on the variables
λ to synthesize a desired motion sequence. Since the size of the vectors λ depends on the size of
the natural modes, the dimension of the optimization problem is 11 in our case.



3 Distance Measures for Comparing Motions

When comparing motions finding a distance measure matching the human perception of motion
is a nontrivial task. A well established approach is to compute a distance based on the average
error of local joint orientations [CH05]. However, such methods may be inappropriate if the global
similarities of poses have to be computed since the hierarchical organization of a skeleton is com-
pletely neglected: An error at a parent joint affects also its children. Hence, a local error at a joint
at the top of the skeleton hierarchy is likely to have a bigger impact on the global error than the
same error at a lower level joint. As a consequence the resulting globally visible error may be not
properly reflected by a distance measure based on local joint orientations. Moreover, using the L2

norm on Euler Angles directly suffers from the problem of finding an adequate distance measure
for this representation of rotations.

3.1 A novel distance measure

In this section we present a novel practical measure to compare the similarities of motions based
on quantities represented in a global coordinate frame. Assuming a fixed skeleton topology our
goal is a universal measure that both matches the human perception and is simple enough to be
implemented in time critical environments.

Figure 1: Left: Notation. Middle: Comparing two trajectories tx and ty to a reference t. Frames
are indicated by dots. Note that ty is just a shifted copy of t. Although the spatial distance
is the same for tx and ty, tx clearly differs from t which can be detected by comparing
the local Taylor expansions of tx and t. In this example a purely pose-based approach
with frame-wise comparison fails. Right: Illustrating the meaning of T j1 ,T j2 ,T j12 and T j21.
In this example Dj

1,2 = ‖T j1 − T
j
2‖.

The basic idea is to frame-wise compare the cross product ~c ji formed by a joint j and two of its
child joints a and b (figure 1 left).

~c ji (a, b, f) = ~vj→a(f)× ~vj→b(f) (5)

Here, f denotes the frame of a motion i for which the cross product at a joint j is computed, ~vj→a
the vector pointing from j to a and ~vj→b the vector pointing to b, respectively. Please note that ~c ji
can be interpreted geometrically as the normal of the triangle spanned by ~vj→a and ~vj→b weighted
by two times the area of this triangle. Hence, ~c ji characterizes the orientation and the relative angle
of two connected bones. In the following the frame-based trajectory of ~c ji is denoted tji .

Supposing that two different motions of a joint j (and its child joints) are given we use a local
Taylor expansion of ~c ji to frame-wise describe the similarity between these two motions. For the



two corresponding first-order Taylor expansions ~T j1 and ~T j2 around the frame f yields:

~T j1 (f) = ~c j1(a, b, f) + ∆t ~̇c
j
1(a, b, f) (6)

and
~T j2 (f) = ~c j2(a, b, f) + ∆t ~̇c

j
2(a, b, f), (7)

where ∆t is a time step and ~̇c ji is the time derivative of ~c ji . Let moreover ~T12 and ~T21 be two
functions of mixed terms of ~T1 and ~T2:

~T j12(f) = ~c j1(a, b, f) + ∆t ~̇c
j
2(a, b, f), (8)

~T j21(f) = ~c j2(a, b, f) + ∆t ~̇c
j
1(a, b, f). (9)

If the two trajectories are traversed in a similar manner ~T j1 , ~T j2 , ~T j12 and ~T j21 have to match. Con-
sequently differences indicate local errors (see also figure 1 middle and right). Based on this
observation our local distance measure Dj

1,2 with respect to a frame f computes as:

Dj
1,2(a, b, f) = max(‖~T j1 − ~T j2‖, ‖~T

j
12 − ~T j21‖), (10)

which can be simplified to:

Dj
1,2(a, b, f) = Cj

1,2(a, b, f) + Ċj
1,2(a, b, f) (11)

with
Cj

1,2(a, b, f) = ‖~c j1 − ~c
j
2‖ (12)

and
Ċj

1,2(a, b, f) = ∆t ‖~̇c j1 − ~̇c
j
2‖. (13)

Setting the remaining free parameter ∆t to

‖~vj→a‖‖~vj→b‖
‖~̇c j1‖+ ‖~̇c j2‖

(14)

scales Ċj
1,2 to the range of Cj

1,2. Now that a similarity measure for a single joint j and two children
a and b can be computed we finally generalize this measure to a distance measure Dpv for an
arbitrary set of joints by summing over all frames f , all joints j and child joints a,b according to

Dpv =

√√√√ d2∑
f=1

d3∑
j=1

Dj(f), (15)

with

Dj(f) =

sj∑
a=1

sj∑
b=1

(1− δab)
(
Dj

1,2(a, b, f)
)2
. (16)

Please note that the error at a joint is implicitly weighted by the length of its bones. This is a desir-
able property, since longer bones are very likely to dominate the perception of a motion. Moreover,
subtle errors like flipped joints are detected by the proposed method. However, although Dpv is
invariant under translation, rotating motions yields different results. This is a direct consequence
of performing all computations with respect to a global coordinate frame.



4 Motion Data Base

For our approach we need a data base of motions that is semantically pre-classified. Using the cat-
egory names such a semantic pre-classification is available in the commonly used CMU database
[Car04]. However, the collection of motions contained in the CMU database is not sufficient for
building a multi-linear model, since most motions are performed by one actor only without any
stylistic variation.

For our purposes we found the data provided by HDM05 motion capture data base [MRC+07]
more suitable. The HDM05 database consists of about 50 minutes of motion data, which are
arranged into 64 different classes and styles. Each such motion class contains 10 to 50 different
realizations of the same type of motion, covering a broad spectrum of semantically meaningful
variations. The resulting motion class database contains 1 457 motion clips.

5 Reconstructing Motions from Few Sensors

5.1 A novel approach based on multi-linear representations of motions

The multi-linear models give rise to morphable models of motions that can be used to synthesize
motions in an easy way by using linear combinations, cf. equation 3.

For reconstructing motions given by only a few sensors we can formulate an optimization problem
trying to find the synthetic motion that best fits the sensor data. In our case we create synthetic
motions, calculate the accelerations and calculate the distance to the data we got from the accel-
eration sensors. Hence our synthetic motions depend on the vectors λ which give the weights to
each row of the matrices U we have to find a configuration for x that best fits the sensor data.

In contrast to [CH05], in which only a pose prior is computed from the data base and the smooth-
ness of transitions is ensured by a rather ad hoc and non-physical smoothness term involving the
two prior poses only, we perform the optimization on a window of frames. In order to make use of
the smoothness conditions contained in the motion data, we calculate distances between complete
motions within the window instead of calculating distances between single frames. This is done
by identifying acceleration vectors with points in 3D space and considering all points defined by
a motion as one big point cloud. Mathematically, the distance between two motions m and m′

(within the window) is given as

dist(m,m′) = min
θ

(
d2∑
f=1

d3∑
j=1

‖af,j − Tθa′f,j‖

)
(17)

where T is a linear transformation that rotates a point a about the (vertical) y-axis by θ degrees.
This minimization problem has a closed-form solution that can be found in [KGP02]. The size of
the Frame mode is denoted by d2 and the one of the Joint mode by d3. Reconstructing a motion
m now means finding coefficients λ so that dist(m,mnew) is minimized with mnew defined as in
equation 3. By applying equation 4 and optimizing in x we can speed up the optimization pro-
cedure by saving tensor multiplications and reducing the number of variables in case of truncated
core tensors, cf. [KTW07, KTMW08]. Note that a solution in x can be easily transformed back to
the more descriptive solution in λ that gives the weights for each component of a natural mode.



(a) (b)

Figure 2: a) Pictures of reconstruction based on the method of Chai and Hodgins using acceleration
data as control signals directly. Original motion (green), reconstruction based on original
control term (yellow) and reconstruction based on modified control term (purple).
b) Pictures of a walking motion. The left picture is from the video we took from the
take, the right picture is a rendered picture of our reconstructed motion from five inertial
sensors.

5.2 Extending the approach of Chai and Hodgins

We extended the technique described in [CH05] from marker positions to accelerations as control
signal. Chai and Hodgins suggest to synthesize the reconstructed motion solving a minimization
problem involving the following three terms:

1. A pose prior using the distribution of poses from a motion data-base.

2. A smoothness term ensuring smooth transitions between poses.

3. A control term measuring the distance of the control signal to the one computed from the
reconstructed motion.

In the original version (according to [CH05]) the control term measures the Euclidean distance
between poses. Thus, conceptually this control term involves distances of positions

Dp
c = ‖f(q)− c‖2. (18)

In principle also accelerations could be used as a control signal meaning that distances between
accelerations have to be computed as e.g.

Da1
c = ‖f̈(q)− c̈‖2 (19)

or

Da2
c =

‖f̈(q)− c̈‖
‖f̈(q)‖+ ‖c̈‖

(20)

Unfortunately, none of these distance measures yields satisfying results, cf. Fig. 2a.

However, when using the position information from the previously reconstructed pose one can
estimate a control position by doubly integrating the acceleration data for one time step. Since the
position estimate bases on a very short time span between two frames the problem of velocity and
position drifts that is otherwise an important issue when integrating acceleration data [WF02] can
be neglected.



6 Results

We used the techniques described in the previous sections to reconstruct motions from just a few
input signals in two different ways.

1. We used the sensor data from some XSens inertial sensors attached to the hands and feet
of some subjects to reconstruct the performed motions. These motions are compared with a
video that was taken during the capturing.

2. In order to numerically compare the outcome of the reconstructed motions, we use motions
of the CMU motion database [Car04] and compute the accelerations of some body points.
Those are then used to reconstruct the motions with our approach.

Moreover, we compare the results of our approach with the techniques described in [CH05],
cf. Sect. 5.2.

6.1 Reconstructions from few sensors

All motions that should be reconstructed out of our model were captured by an Xbus Master sys-
tem from the company XSens http://www.xsens.com. The system consists of five sensors
(called MTx) that provide measurement of drift-free 3D orientation as well as kinematic data: 3D
acceleration, 3D rate of turn (rate gyro) and 3D earth-magnetic field. We refer to the supplemented
video for results of this reconstruction. In Fig. 2b some screenshots are given as a reference.

6.2 Numerical comparisons

As described in section 4 we build our multi-linear model from the HDM05 motion database. To
verify our results, we evaluate our reconstructions with motion data taken from the CMU database
or from left-out motions from the HDM05 data-base, if no suitable motions are contained in the
CMU database.

Moreover, we compare these results of the reconstructions of our novel approach with the results
obtained by the technique of Chai and Hodgins [CH05]. As the acceleration data have to be derived
from the position data in these examples taken from motion capture data, we use the position data
directly in the control term instead of locally estimating them from acceleration data and position
data of the previously synthesized pose, cf. Sect. 5.2. As this techniques uses PCA on a set of
“similar poses” we will use the term “PCA based approach” in our tables.

In table 1 results of this comparison are shown. We used the same distance measure the authors
suggest in [CH05], where the L2-distance is calculated over the joint angles of the motions (which
we will denote by DE). We refer to the supplemented video for renderings of the reconstructions.

Whereas for the walking motion both approaches give visually appealing results, if the data of
accelerations of the two hands and feet are used, the PCA based approach gives strong artifacts if
only two or one sensor is used (see also the screen shots given in Fig. 3 and Fig. 5).

Notice also the performance of the distance measures when comparing the numerical results with
the ones of the renderings of the reconstructions. Whereas the novel distance measure Dpv in-
troduced in Sect. 3.1 clearly identifies problematic cases, the joint angle based measure DE) fails

http://www. xsens.com


Table 1: Average reconstruction errors for sample motions from MoCap data for the PCA-based
approach and our Multi-linear Motion Model (MMM). We give the average reconstruction
errors using the novel distance measure defined in section 3.1 summing over all joints
(denoted by Dpv), and the commonly used L2-distance calculated over the joint angles
(denoted by DE).

Walking Cartwheel
Distance MMM Distance PCA Distance MMM Distance PCA

Regarded joints Dpv DE Dpv DE Dpv DE Dpv DE

footL 15.23 12.16 64.38 11.27 21.22 15.32 102.41 30.49
footR 17.63 12.02 43.64 13.39 40.34 15.83 98.20 39.11
handL 14.83 11.44 24.28 11.34 25.35 15.57 93.73 39.89
handR 14.75 10.13 24.59 12.73 50.42 17.63 91.06 37.26
footL, footR 15.32 8.18 17.37 9.93 26.50 15.11 79.36 33.91
footL, handL 23.41 5.55 24.06 10.29 24.81 15.37 88.38 36.23
footL, handR 14.47 10.18 45.85 16.17 41.49 16.19 90.22 31.45
footL, footR, handL 17.26 14.55 16.76 12.22 25.22 15.39 89.80 33.74
footL, handL, handR 14.50 10.64 22.89 10.40 23.45 16.59 88.13 30.62
footL, footR, 14.82 10.15 21.75 13.95 29.69 15.29 93.45 36.00
handL, handR
footL, footR, handL, 14.98 10.45 25.68 16.13 29.62 15.29 91.35 31.98
handR, shoulderR
footL, footR, handL, 14.54 10.67 23.70 16.91 25.27 15.26 88.32 33.75
handR, kneeL, kneeR

to detect artifacts like directional flips or jitter. Moreover, perceptually similar motions get small
distances within the novel distance measure Dpv.

7 Conclusion and Future Work

The results of this paper are a proof of concept that reconstructions of full body motions are
possible from the control signals of very few acceleration sensors and using pre-classified motions.
Whereas for some of our test motions a PCA based approach and our method already work quite
well if 4 sensors are used on both hands and feet, for other motions our approach gives significant
advantages. If only one or two sensors are used, our novel approach gives significant advantages
for all of the tested sample motions.

In several applications there will be a priori knowledge about the kind of expected motions. For
reconstructions of general motions that are a sequel of different kinds of motion we plan to combine
our approach with classification techniques for motions such as motion templates [MR06]. We
presume that by using indexing techniques for features we can come up with algorithms which
require a preprocessing time being linear in the size of the data base thus overcoming the bottle-
neck of quadratic preprocessing time (in the size of the underlying motion data base) to construct
a neighbor graph of motions as in [CH05]. Also in future work we plan to compare the outcome
of the linear techniques for dimensionality reduction as is done in [CH05] but also in our novel
approach by non-linear techniques: we will consider the non-linear transformations obtained by
inverse dynamics calculations but also Gaussian latent variable methods (GPVLM) that have been
already used for “style-based inverse kinematics” [?].



Figure 3: Screenshots from original motion (green), synthesized motion with our method (yellow)
and synthesized motion with PCA based method (purple). Just two accelerations were
used for reconstruction. In the right picture problems of the PCA method get visible that
occur when using few markers.

Figure 4: Some frames of an original cartwheel motion (green) and reconstructions (yellow our
method, purple PCA based method). For both reconstructions we used acceleration data
of the left foot and left hand only. One can see that the PCA based method shows massive
errors in this case.

Figure 5: Comparison of two frames of an original walking motion (brown) and a reconstruction
with our method (green). We only used the acceleration data of the left foot and the left
hand to reconstuct these motions.



Our current implementation in Matlab is not suitable for any real-time requirements. Especially
if one considers the very low latency requirements necessary for many tracking applications in
VR and AR it might be necessary not only to use the parallel architectures of modern CPUs but
also the parallel capabilities of modern GPUs as streaming processors to meet the requirements
for on-line tracking. In addition to motion capturing, motion tracking, and motion puppetry our
technique also seems to open the door to novel means of realistically synthesizing avatar motions
from low dimensional control signals. In future work we will also explore this line of research.
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