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Abstract
Creating geometrically detailed mesh animations is an involved and resource-intensive process in digital content
creation. In this work we present a method to rapidly combine available sparse motion capture data with existing
mesh sequences to produce a large variety of new animations. The key idea is to model shape changes correlated
to the pose of the animated object via a part-based statistical shape model. We observe that compact linear models
suffice for a segmentation into nearly rigid parts. The same segmentation further guides the parameterization of
the pose which is learned in conjunction with the marker movement. Besides the inherent high geometric detail,
further benefits of the presented method arise from its robustness against errors in segmentation and pose param-
eterization. Due to efficiency of both learning and synthesis phase, our model allows to interactively steer virtual
avatars based on few markers extracted from video data or input devices like the Kinect sensor.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—[Animation]

Keywords: motion transfer, motion capture, mesh anima-
tion, morphable part model

1. Introduction

The creation of detailed mesh animations is a time consum-
ing task, even for skilled animators. We introduce a system
which allows even untrained users to generate new mesh
animations based on an example input mesh sequence and
sparse marker data. An illustration of a characteristic result
is given in Fig. 1.

Inspired by previous work in the field of modifying mesh
sequences we found that, commonly, sophisticated input
is required to produce variations of a mesh animation, ei-
ther in terms of additional mesh animations or registered
high quality scans or detailed manual user input. This mo-
tivates the question as to what is the sparsest user input
that still allows for concerted creation of novel animations.
This topic has been investigated in a different context from
several specific angles: Tena et al. [TDM11] and Weise et
al. [WBLP11] concentrate on facial animation while Huang
et al. [HZY∗11] focus on hand deformations. These works
are complemented by the presented motion transfer system
to steer articulated full body movement.

Aside from direct motion transfer our method is also capa-
ble of semantic deformation transfer [BVGP09]. By adapt-
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Figure 1: Based on Kinect input (1,2) a novel animation of
an existing mesh sequence is created (3). Three markers per
person are sufficient to steer the horse legs.

ing the marker input carefully to the example mesh, differ-
ing bone length and movement styles can be compensated.
Furthermore, since parts are treated individually, articulated
parts of the input can be mapped arbitrarily to mesh parts as
in the example shown in Fig. 1.

In summary, our method meets the following require-
ments for an interactive motion transfer system: 1) The mo-
tion style of the MoCap input is preserved. 2) Synthesis of
poses not contained in the training sequence is possible. 3)
Faithful reproduction of characteristic shape deformations
from mesh examples. 4) Analysis is efficient (within min-
utes) and synthesis is interactive.
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Figure 2: Analysis phase of presented method (Sec. 4).

2. Related Work

Working with mesh sequences has recently become an ac-
tive field of research with two major trends. Trend one is to
perform high level editing of mesh sequences, e.g. by trans-
ferring the global pose to different models [SP04,BVGP09],
combining this with mesh editing approaches [XZY∗07,
FB11] or modifying the sequence in an abstract 2-D pa-
rameterization [CH12]. A second trend are data-driven de-
formation and enveloping approaches, e.g. in cloth simula-
tion [KG08], anatomy-based animation [WPP07] and most
recently in wrinkle synthesis of human hands [HZY∗11].

Data-driven deformation. In [HZY∗11], high quality 3D
scans of human hands serve as training examples for wrinkle
deformation with respect to hand poses. Huang et al. perform
non-linear regression between a sparse set of control points
and normal displacement maps derived from the scans. By
restricting the influence region of each control point, a ge-
ometrically local deformation model is trained. Wang et
al. [WPP07] propose to replace traditional linear blend skin-
ning by shape spaces learned from examples. Contrary to
our approach, correct kinematic skeletons for the examples
are available, and the focus of [WPP07] is on quality, as op-
posed to robustness or sparse marker input.

Editing of mesh sequences. Deformation transfer [SP04,
BSPG06] is a popular editing method for meshes, extended
to mesh animations by Xu et al. [XZY∗07]. The general ap-
proach is based on deformation gradients representing trian-
gle rotations between compatible meshes. Applying defor-
mation gradients of one mesh animation to a different mesh,
Pose transfer is facilitated. However, changing the style of
motion is not possible.

Automatic rigging/skinning. Automatic skeleton rigging
and skinning approaches such as [JT05, BP07] also take ad-
ditional shape information into account, although no shape
models are employed. Example meshes are solely used to
train blend skinning approaches, either by fitting skeletons to
or by deriving blending weights from meshes. In [BP07], a
kinematic skeleton is fitted robustly into a single static mesh
which can in turn be animated. On the other hand, De Aguiar
et al. [dATTS08] show how to fit a kinematic skeleton to a
mesh animation. In [JT05] a large number of virtual bones

Shape
optimization

New animationKinect input

Figure 3: Synthesis phase of presented method (Sec. 5).

with skinning weights is derived from clustering triangle ro-
tations, leading to a hardware efficient representation.

3. Overview of our method

We come up with a part-based model that distinguishes the
mesh into limb and body parts. This separation allows a con-
cise and robust parameterization of shape (per part) as well
as pose (as relationship between parts). Pose and shape anal-
ysis produce low dimensional parameterizations for each
part which in turn are connected via regression functions.
The final synthesis step is formulated as a shape optimiza-
tion problem that moderates between pose and shape pre-
dictions. The whole approach decomposes into an analysis
phase and a synthesis phase, illustrated in Figures 2 and 3.

Distinction between limbs and body of a given model
makes sense due to the following observation. Suitable in-
put marker sets are required to provide information unique
to articulated poses. These are typically given by positions
of feet and hands (humans), hooves, wings or ears (animals)
in relation to a reference (e.g. hip or spine) within the given
body. In the context of searching human motion databases,
Krüger et al. [KTWZ10] have successfully restricted to such
information as well.

4. Learning a combined model for pose and shape

The combined model of pose and shape has to relate marker
positions to mesh pose and shape. To this end suitable rep-
resentations of marker input and mesh pose are required. A
linear shape model computed on nearly rigid clusters of the
mesh delivers a compact set of shape parameters (Sec. 4.4).
Marker input, pose and shape of each limb l are linked by
regression functions Φ

l and Ψ
l as

Ml
mocap

Φ
l

−→P l
vskel and Ml

mocap
Ψ

l

−→S l
shape (1)

where Ml
mocap and P l

vskel are the parameter sets for pose
and S l

shape for shape, respectively (Sec. 4.3).

Input to the training phase are m marker and n mesh vertex
trajectories given as mi : {1, . . . ,FM} → R3 for i = 1, . . . ,m
and v j : {1, . . . ,FN}→R3 with j = 1, . . . ,n over FM MoCap
and FN mesh animation frames. Additionally, the user selects
a corresponding vertex for each marker which results in a
correspondence map τ : {1, . . . ,m}→ {1, . . . ,n}.

4.1. Pose representation and parameterization

Pose parametersMl
mocap are derived from the marker graph

G = (M,EG) consisting of the used markers M = {1, . . . ,m}
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Figure 4: Control points and clustering for the horse model.

and edges EG ⊂ M2, roughly describing limb and body
topology. The body is identified with a reference edge eref ∈
EG, whereas limbs are simple paths in G. Considering the
sparsest MoCap setting with one marker per end-effector,
each limb path pG will consist of a single edge (m1,m2) be-
tween two markers. Limb orientation is later parameterized
relative to eref. For humans and animals eref is usually given
by markers placed near the backbone, but in general, any
nearly rigid edge can serve as reference edge.

On the mesh, a virtual skeleton graph H = (C,EH) is de-
fined capturing adjacency of the mesh clusters and driving
the parameterization P l

vskel. Nodes in C = {1, . . . ,k} repre-
sent clusters while EH ⊂ H2 contains undirected edges for
adjacent clusters. Since the mesh is dissected into (nearly)
rigid parts the clustering reflects, to some extent, the bone
and joint semantics of common animation skeletons. To
parameterize the orientation between two clusters, virtual
joints J are introduced at the barycenters of the cluster inter-
sections. This is accomplished by attaching a virtual joint,
γ : EH → J, to each edge.

Limbs in H are characterized by extracting a limb path
from the marker graph G as follows. For each limb path
pG = (m1,m2) in G we define a set of control points

pl
ctrl = (v1,γ(e1), . . . ,γ(e|pl

ctrl−2|),v2) (2)

where vertices v1 = τ(m1) and v2 = τ(m2) correspond to
markers m1 and m2. Intermediate virtual joints γ(ei) are de-
fined by edges ei along the shortest path in H between the
clusters containing v1 and v2, see Fig. 4 for an illustration.

Pose parameterization. The pose parameters in Ml
mocap

and P l
vskel are outlined in Table 1. Rotation angles and

edge lengths are derived from each limb path pG within the
marker graph. Based on the denser set of control points (2) in
the virtual skeleton, unit quaternions representing local rota-
tions can be computed. The direction of movement of the
associated markers mi and vertices vi, computed via forward
differences dmi( f ) = mi( f+1)−mi( f )

‖mi( f+1)−mi( f )‖ and similarly for dvi ,
is considered for both parameter sets. Velocity would pro-
vide an alternative parameter but is less robust due to differ-

Parameters for marker graph Ml
mocap

α1 Angle between the eref and the first edge in pG.
α j Angles between successive edges in pG (for j > 1).
‖e j‖ Lengths of edges in pG.
dmi Direction of movement of marker mi.

Parameters for virtual skeleton P l
vskel

q1 Quaternion rotating between the mesh vertices corre-
sponding to eref and the first edge (v1,γ(e1)) in pl

ctrl.
q j Quaternion rotating between successive edges in pl

ctrl.
dv j Direction of movement of control point v j .

Table 1: Pose parameterization

ent sampling rates and movement styles of mesh animation
and marker input.

ForMl
mocap it is important to take edge lengths ‖e j‖ into

account since we do not require any markers near real joint
positions. Thus, the edges in the marker graph do not corre-
spond to otherwise employed bones in animation skeletons.
Accordingly, a change in length of these edges is a strong
indicator for a possible bend of in-between joints which are
available in the virtual skeleton.

4.2. Pose adaption

As implied, we do not expect the settings of marker input and
and mesh model to be the same in an anatomical sense, nor
do we require an overall equivalence of proportions between
the two. Also, poses of animation input do not necessarily
occur in the original mesh sequence. Contrarily, within a cer-
tain range, they are the basis on which new motion styles will
be trained. This requires sensible pose adaption as prepara-
tion for further computations. To begin with, a best-frame fit
between mesh sequence and input marker sequence is key to
successful training. A mapping

f ∗l : {1, . . . ,FM}→ {1, . . . ,FN} (3)

fits the former setting to the latter according to rotation an-
gle conformity. That is angles θm, θv between (m1,m2) and
(v1,v2) on each limb path are considered and we minimize

f ∗l ( j) := min
i

(
|∆m( j)−∆v(i)|+

σ

2
(1− sgn(∆m∆v))

)
(4)

where ∆m( f ) = θm( f +1)−θm( f ), ∆v accordingly and σ =
stdev(θm). Furthermore, the total and local ranges of motion
between the settings will severely differ as exemplified by
comparison of leg rotation angles in different equine gaits.
To allow reasonable motion transfer, the variances within
both sets need to agree. As a matter of fact, so should the
variances of other corresponding parameter sets such as the
lengths of graph edges in G and M. Meeting both above con-
ditions calls for inverse kinematics to restore relative posi-
tions correctly.

4.3. Pose and shape regression

Training the relationship between parameterized pose in-
formation of the original input Ml

mocap and corresponding
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pose parameters P l
vskel will achieve meaningful pose trans-

fer. Multivariate multiple regression serves well as a training
mechanism for Φ

l in (1) and supports interpolation between
trained motion parameters [Ren02]. Posed as a multivariate
least squares problem

min
Φl

∥∥∥∥Φ
l ·
[
Ml

mocap
1

]
−P l

vskel

∥∥∥∥2

Frob
(5)

this means optimizing a prediction Φ
l ∈ Rs×s′ with s,s′ the

respective dimensions of the parameter sets. The underly-
ing statistical relationship between the same parameter input
Mmocap and the part-shape information S l

shape establishes

the shape characteristics Ψ
l of the output animation in the

same fashion.

4.4. Part-Shape model

A separate linear shape model [BV99] is established for each
cluster of the mesh. Given n cluster vertices with index set
{i1, . . . , in} as a matrix

X =

vi1(1) · · · vi1(FN)
...

. . .
...

vin(1) · · · vin(FN)

= [x1 · · ·xFN ] ∈ R3n×FN ,

a set of eigenshapes V is derived via eigendecomposition
of the scatter matrix 1

FN−1 (X −X)(X −X)T = V Σ
2V T with

Σ
2 = diag(σ2

1, . . . ,σ
2
FN
). This leads to a linear shape model

x̂ = x+V λ (6)

where x = ∑
FN
i xi is the mean shape and λ = (λ1, . . . ,λk)

T

are shape parameters. The Gaussian model assumption un-
derlying (6) implies that λi should be normally distributed
according to the shape variances σ

2
i .

Before the shape parameters Sshape can be derived, the
mesh sequence has to be brought into a common coordi-
nate system. This is done by rigidly aligning all mesh frames
against an (arbitrarily chosen) reference frame . Afterwards,
principal modes V of shape variation are computed. Due to
clustering into nearly rigid parts, the shape variation of a sin-
gle part can be compactly described by few linear modes. In
our experiments we observe that the first two modes explain
almost always more than 95 percent of shape variability. Pro-
jection of an aligned shape x into the space spanned by the
first k modes V1...k results in k shape coefficients:

s = (s1, . . . ,sk)
T =V T

1...k(x−x), s ∈ Sshape

4.5. Clustering

Developing a part-based shape model depends upon a suit-
able method to derive cluster parts from a given mesh
model. In our case, a clustering into near-rigid parts was
performed by the compression method proposed by Sattler

et al. [SSK05], comprising clustered PCA. This accommo-
dates shape models of separate mesh parts with respect to
trajectory resemblance. The inset in Fig. 4 shows an exam-
ple clustering for the horse sequence.

For later rigid alignment and shape optimization we ex-
tend the disjoint partitioning from the clustering algorithm
by overlaps between adjacent clusters. Vertices in the over-
laps serve as constraints in mentioned optimizations con-
necting adjacent cluster shapes and orientations. For this
purpose it is appropriate to simply extend a disjoint parti-
tioning by adjacent vertices along cluster intersections.

5. Synthesis of new animations

After a short training phase, the conditioned pose and shape
regression functions Φ and Ψ can be applied to new marker
input. Synthesis starts by computing the parameterization
M∗ from the new marker input. Subsequently, Φ(M∗)
gives the correlated pose of the virtual skeleton, in terms of
quaternions, whereas Ψ(M∗) yields the according shape pa-
rameters for the limbs.

Greedy alignment.

Shape optimized.

Shape and pose parameters can be
conflicting such that direct assem-
bly of synthesized shapes rotated by
predicted quaternions leads to un-
pleasant artifacts as shown in the in-
set. These issues are addressed in
an iterative optimization process. Its
final goal is to find a rigid align-
ment for all clusters as well as shape
parameters that produce an artifact
free mesh respecting pose and shape
predictions. Simultaneous optimiza-
tion of both rigid alignment and
shape parameters leads to a non-linear problem. Similar
to [XZY∗07,BBW∗11] we approach the solution by an alter-
nating least squares method. It efficiently solves for a rigid
alignment (Sec. 5.1) keeping the shape parameters fixed and
vice versa. Executing the shape optimization for a few itera-
tions will return a consistent alignment and shape parameters
for all clusters (Sec. 5.2). After blending multiple occuring
clusters (Sec. 5.3) the final output mesh is assembled.

5.1. Greedy rigid alignment

Rotation and translation have to be estimated simultaneously
for all mesh clusters. Avoiding an intricate global solution
we greedily align pairwise adjacent clusters according to
their overlap. Starting with the largest cluster, the adjacent
cluster with most overlapping vertices is chosen. The two
clusters are rigidly aligned and merged into a super-cluster
for further alignment. Repeating this greedy procedure will
finally return a single super-cluster with all mesh clusters
consistently aligned. Keeping track of rotations and trans-
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Figure 5: Motion transfer from MoCap data of Indigena dataset to Sumner horse sequence. For comparison, frames with
similar pose in right fore leg are aligned column wise. (First row:) Original Sumner horse sequence. (Second row:) Motion
transfer synthesized on Indigena trot sequence. (Third row:) Motion transfer synthesized on Vic trot sequence. Note that the trot
sequences are similar to each other but differ severely in motion style from the gallop of the original mesh animation.

lations in this process a rigid transformation for each mesh
cluster is found.

5.2. Shape optimization

Given a set of prescribed vertex coordinates {xi}, xi ∈ R3

we optimize the shape x̂ ∈R3n to match x̂i = xi. As a further
constraint we want the shape to be “plausible” that is force
it to stay close to the Gaussian shape model. We use the for-
mulation of Berner et al. [BBW∗11, BBW∗12] and express
the shape optimization as the following minimization

λ
∗ := min

λ
∑
i∈C
‖xi− x̂i(λ)‖2 +β ·

k

∑
i=1

‖λi−λ
+
i ‖

2

σ2
i

(7)

which yields optimized shape parameters λ
∗. The first term

assures that the fixed vertices xi in the overlap to adjacent
clusters are matched while the second term regularizes the
predicted shape weighted with a user parameter β. We in-
troduce prior knowledge about “plausible” shape parame-
ters here via λ

+
i and penalize deviations from these. This

allows the limbs to adhere to the shape predicted by Ψ(M∗)
while body clusters are initialized with the mean shape prior
λ
+
i = 0.

Eq. (7) leads to an over-determined linear system Aλ = b
of 3k equations which is solved efficiently in a least squares
fashion. Note that the number of fixed vertices k in the clus-
ter overlaps is only a small fraction of the mesh vertices.

5.3. Blending of shared clusters

So far we omitted the fact that a mesh cluster can be con-
tained in several limbs. This is a typical situation in coarse
clustering where the limbs meet at a common point (e.g. the
hip in a human model). We call this shared clusters. For the
optimization process we simply duplicate shared clusters in
the virtual skeleton graph and treat them independently. This
is important, since the shape parameters can be conflicting
for poses very different from the ones in the mesh anima-
tion.

Blending a cluster shared by m limbs is realized through
blend functions wi, one for each limb. At any boundary ver-
tex v to a specific limb l weights are wl(v) = 1 and wi(v) = 0
for i 6= l. Based on minimum geodesic distance dl(v) from
vertex v to the boundary vertices of limb l, smooth linear
interpolation weights are given by

wl(v) =
∑

m
i=1 di(v)−dl(v)

∑
m
i=1 di(v)

(8)

Note that the blending functions do not depend on the
synthesis parameters and can be pre-computed.

6. Results

We implemented a Matlab prototype of our motion trans-
fer system which, though not optimized, synthesizes several
frames per second.

Motion transfer of quadrupeds. Our method manages the
translation of motion attributes tracked from quadruped lo-
comotion to a given mesh sequence. Results of training
equine gait samples (trot) on a sequence of horse mesh
frames displaying a different gait (canter) are shown in
Fig. 5. As expected, they expose characteristic differences in
overall pose as well as local attributes according to the pose
dissimilarities of the featured gaits. As a matter of fact, these
examples also display slight shape distortion within certain
parts of the model, e.g. hooves. These were exhibited by
original mesh samples in mild form and are exaggerated by
restriction to linear regression as training method. Resorting
to kernel CCA [FKY08] for training purposes should help
suppress such phenomena. Synthesis on a motion sequence
performed by a different individual subsequent to the above
training was conducted in addition. The results constitute the
third row of Fig. 5 and display gait style characteristics of the
second individual compared to the first.

Motion transfer of bipeds. Similarly, a biped bunny mesh
was trained to perform a straightforward walk learned on an
example sequence of human locomotion. Alternative syn-
thesis on a different walking sequence involving a curve
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results in the correct change of walking direction and pos-
ture in the succeeding animation, please see the accompa-
nying video. Within this context, the semantic quality of
the transfer is apparent since the skeleton proportions of se-
lected mesh and motion capture input differ considerably.
All motion capture sequences were taken from the HDM05
database [MRC∗07].

Interactive steering of animations by Kinect input. Since
creating mesh animations from motion capture data has
proved to be feasible, steering mesh animations by user in-
teraction can be tackled as well. Kinect input of human loco-
motion - performed jointly by two actors - were transferred
to the mesh model setup. Results are shown in Fig. 1 and the
accompanying video.

7. Conclusion and Future Work

The work at hand describes an efficient way towards more
effortless creation of new digital content from existing ma-
terial. The key idea is combining available mesh sequences
with a variety of motion sensing input. In particular, since
motion sensing input devices are emerging at consumer
level, the method points to new paradigms in the field. We
presented a method for effective motion transfer from sparse
marker input data to mesh sequences. Mindful pose adaption
and shape optimization achieves plausible results in different
scenarios. We demonstrated that the proposed method comes
with a variety of applications such as semantic deformation
transfer, interactive steering of mesh animations and motion
style transfer to bi- and quadrupeds.

Current limitations are foot skating artifacts and lack off
ground contact, which can e.g. be modeled as hard con-
straints in the synthesis step. So far, extrapolation quality
depends on the particular input sequences. Considering more
complex examples are expected to improve results, but will
probably require non-linear methods in the analysis phase.

Future work will focus on generalizing the essential idea
of transferring sparse input signals to part-based pose and
shape models. Investigating alternative input signals, e.g. au-
dio, is one such generalization. Employing more abstract
shape spaces which model features of given data on a higher
semantic level is another. The latter could involve modeling
motion properties of more complex nature.
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